Construction of a complete set of orthogonal Fourier-Mellin moment invariants for pattern recognition applications

被引:40
|
作者
Zhang, H. [1 ]
Shu, H. Z. [1 ]
Haigron, P. [2 ,3 ]
Li, B. S. [4 ]
Luo, L. M. [1 ]
机构
[1] Southeast Univ, Lab Image Sci & Technol, Sch Engn & Comp Sci, Nanjing 210096, Peoples R China
[2] INSERM, U642, F-35042 Rennes, France
[3] Univ Rennes 1, Lab Traitement Signal & Image, F-35042 Rennes, France
[4] Shandong Canc Hosp, Dept Radiat Oncol, Jinan 250117, Peoples R China
基金
中国国家自然科学基金;
关键词
Orthogonal Fourier-Mellin moments; Completeness; Similarity invariants; Moment invariants; Pattern recognition; SCALE INVARIANTS; CHARACTER-RECOGNITION; IMAGE-RECONSTRUCTION; ZERNIKE; TRANSLATION;
D O I
10.1016/j.imavis.2009.04.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The completeness property of a set of invariant descriptors is of fundamental importance from the theoretical as well as the practical points of view. In this paper, we propose a general approach to construct a complete set of orthogonal Fourier-Mellin moment (OFMM) invariants. By establishing a relationship between the OFMMs of the original image and those of the image having the same shape but distinct orientation and scale, a complete set of scale and rotation invariants is derived. The efficiency and the robustness to noise of the method for recognition tasks are shown by comparing it with some existing methods on several data sets. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 44
页数:7
相关论文
共 50 条
  • [21] Automatic recognition of shoeprints using Fourier-Mellin transform
    Gueham, M.
    Bouridane, A.
    Crookes, D.
    Nibouche, O.
    PROCEEDINGS OF THE 2008 NASA/ESA CONFERENCE ON ADAPTIVE HARDWARE AND SYSTEMS, 2008, : 487 - 491
  • [22] Fast computation of orthogonal Fourier-Mellin moments in polar coordinates
    Hosny, Khalid Mohamed
    Shouman, Mohamed A.
    Salam, Hayam M. Abdel
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2011, 6 (02) : 73 - 80
  • [23] Computation of orthogonal Fourier-Mellin moments in two coordinate systems
    Hu, Hai-tao
    Zi-liang, Ping
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (05) : 1080 - 1084
  • [24] Subpixel edge location based on orthogonal Fourier-Mellin moments
    Bin, T. J.
    Lei, Ao
    Jiwen, Cui
    Wenjing, Kang
    Dandan, Liu
    IMAGE AND VISION COMPUTING, 2008, 26 (04) : 563 - 569
  • [25] A Novel Set of Moment Invariants for Pattern Recognition Applications Based on Jacobi Polynomials
    Rocha Angulo, Rafael Augusto
    Martin Carpio, Juan
    Rojas-Dominguez, Alfonso
    Ornelas-Rodriguez, Manuel
    Puga, Hector
    PATTERN RECOGNITION (MCPR 2020), 2020, 12088 : 139 - 148
  • [26] Invariant content-based image retrieval using a complete set of Fourier-Mellin descriptors
    Derrode, S
    Daoudi, M
    Ghorbel, F
    IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS, PROCEEDINGS VOL 2, 1999, : 877 - 881
  • [27] Invariant content-based image retrieval using a complete set of Fourier-Mellin descriptors
    Derrode, Stephane
    Daoudi, Mohamed
    Ghorbel, Faouzi
    International Conference on Multimedia Computing and Systems -Proceedings, 1999, 2 : 877 - 881
  • [28] Digital Image Pattern Recognition System Using Normalized Fourier Transform and Normalized Analytical Fourier-Mellin Transform
    Velez-Rabago, Rodrigo
    Solorza-Calderon, Selene
    Jordan-Aramburo, Adina
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2016 (ICCMSE-2016), 2016, 1790
  • [29] On the fast computation of orthogonal Fourier-Mellin moments with improved numerical stability
    Walia, Ekta
    Singh, Chandan
    Goyal, Anjali
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2012, 7 (04) : 247 - 256
  • [30] Complete invariant description under usual Fourier-Mellin transform
    Yu, HC
    Bennamoun, M
    ISSPA 2005: The 8th International Symposium on Signal Processing and its Applications, Vols 1 and 2, Proceedings, 2005, : 815 - 818