Fractional Orthogonal Fourier-Mellin Moments for Pattern Recognition

被引:44
|
作者
Zhang, Huaqing [1 ]
Li, Zongmin [1 ]
Liu, Yujie [1 ]
机构
[1] China Univ Petr Huadong, Qingdao Econ & Technol Dev Zone, 66 Changjiang West Rd, Qingdao 266580, Shandong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Fractional orthogonal Fourier-Mellin moments; Orthogonal Fourier-Mellin moments; Moment invariant; Pattern recognition; OBJECT RECOGNITION; IMAGE-ANALYSIS; FEATURES; ZERNIKE; COMPUTATION; SHAPE;
D O I
10.1007/978-981-10-3002-4_62
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we generalize the orthogonal Fourier-Mellin moments (OFMMs) to the fractional orthogonal Fourier-Mellin moments (FOFMMs), which are based on the fractional radial polynomials. We propose a new method to construct FOFMMs by using a continuous parameter t (t > 0). The fractional radial polynomials of FOFMMs have the same number of zeros as OFMMs with the same degree. But the zeros of FOFMMs polynomial are more uniformly distributed than which of OFMMs and the first zero is closer to the origin. A recursive method is also given to reduce computation time and improve numerical stability. Experimental results show that the proposed FOFMMs have better performance.
引用
收藏
页码:766 / 778
页数:13
相关论文
共 50 条
  • [1] ORTHOGONAL FOURIER-MELLIN MOMENTS FOR INVARIANT PATTERN-RECOGNITION
    SHENG, YL
    SHEN, LX
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (06): : 1748 - 1757
  • [2] Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments
    Kan, C
    Srinath, MD
    PATTERN RECOGNITION, 2002, 35 (01) : 143 - 154
  • [3] Accurate Computation of Orthogonal Fourier-Mellin Moments
    Chandan Singh
    Rahul Upneja
    Journal of Mathematical Imaging and Vision, 2012, 44 : 411 - 431
  • [4] Accurate Computation of Orthogonal Fourier-Mellin Moments
    Singh, Chandan
    Upneja, Rahul
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2012, 44 (03) : 411 - 431
  • [5] Recognition of digital annotation with invariant HONN based on orthogonal Fourier-Mellin moments
    Wang, JP
    Sun, Y
    Chen, Q
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 2261 - 2264
  • [6] Improvement and invariance analysis of Orthogonal Fourier-Mellin moments
    Bin, Y
    Jia-Xiong, P
    Qiu-Shi, R
    Wan-Rong, L
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2003, 17 (06) : 983 - 993
  • [7] Image Reconstruction from Orthogonal Fourier-Mellin Moments
    Wang, Xiaoyu
    Liao, Simon
    IMAGE ANALYSIS AND RECOGNITION, 2013, 7950 : 687 - 694
  • [8] Fast numerically stable computation of orthogonal Fourier-Mellin moments
    Papakostas, G. A.
    Boutalis, Y. S.
    Karras, D. A.
    Mertzios, B. G.
    IET COMPUTER VISION, 2007, 1 (01) : 11 - 16
  • [9] Fast computation of orthogonal Fourier-Mellin moments in polar coordinates
    Hosny, Khalid Mohamed
    Shouman, Mohamed A.
    Salam, Hayam M. Abdel
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2011, 6 (02) : 73 - 80
  • [10] Computation of orthogonal Fourier-Mellin moments in two coordinate systems
    Hu, Hai-tao
    Zi-liang, Ping
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (05) : 1080 - 1084