On spectral moments and energy of graphs

被引:0
|
作者
Zhou, Bo [1 ]
Gutman, Ivan
de la Pena, Jose Antonio
Rada, Juan
Mendoza, Leonel
机构
[1] S China Normal Univ, Dept Math, Guangzhou 510631, Peoples R China
[2] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
[3] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[4] Univ Los Andes, Dept Matemat, Merida 5101, Venezuela
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Let G be a graph on n vertices, and let lambda(1), lambda(2),..., lambda(n) be its eigenvalues. The energy of G is E = Sigma(n)(i=1) vertical bar lambda(i)vertical bar. The k-th spectral moment of G is M-k = Sigma(n)(i=1) (lambda(i))(k). We prove that for even positive integers r, s, t, such that 4r = s + t + 2, the inequality E >= (M-r)(2) /root MsMt holds for all graphs with at least one edge, thus generalizing ail earlier result.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 50 条
  • [41] Vacuum energy and spectral analysis for Robin boundaries and quantum graphs
    Fulling, S. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (21): : 6377 - 6383
  • [42] On generalized distance spectral radius and generalized distance energy of graphs
    Khan, Zia Ullah
    Zhang, Xiao-Dong
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (08)
  • [43] On Spectral Radius and Energy of Arithmetic-Geometric Matrix of Graphs
    Zheng, Lu
    Tian, Gui-Xian
    Cui, Shu-Yu
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 83 (03) : 635 - 650
  • [44] Sharp bounds on the distance spectral radius and the distance energy of graphs
    Indulal, G.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 106 - 113
  • [45] The ρ‐-moments of vertex‐weighted graphs
    Chang, Caibing
    Ren, Haizhen
    Deng, Zijian
    Deng, Bo
    Ren, Haizhen (haizhenr@126.com), 1600, Elsevier Inc. (400):
  • [46] Moments of graphs in monotone families
    Füredi, Z
    Kündgen, A
    JOURNAL OF GRAPH THEORY, 2006, 51 (01) : 37 - 48
  • [47] SPECTRAL MOMENTS OF POLYACENES
    KHADIKAR, PV
    DESHPANDE, NV
    KALE, PP
    GUTMAN, I
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (05): : 1181 - 1183
  • [48] Instantaneous spectral moments
    Davidson, KL
    Loughlin, PJ
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2000, 337 (04): : 421 - 436
  • [49] Spectral moments of phenylenes
    Markovic, S
    Markovic, Z
    McCrindle, RI
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2001, 41 (01): : 112 - 119
  • [50] THE SPECTRAL MOMENTS METHOD
    BENOIT, C
    ROYER, E
    POUSSIGUE, G
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (12) : 3125 - 3152