On spectral moments and energy of graphs

被引:0
|
作者
Zhou, Bo [1 ]
Gutman, Ivan
de la Pena, Jose Antonio
Rada, Juan
Mendoza, Leonel
机构
[1] S China Normal Univ, Dept Math, Guangzhou 510631, Peoples R China
[2] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
[3] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[4] Univ Los Andes, Dept Matemat, Merida 5101, Venezuela
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Let G be a graph on n vertices, and let lambda(1), lambda(2),..., lambda(n) be its eigenvalues. The energy of G is E = Sigma(n)(i=1) vertical bar lambda(i)vertical bar. The k-th spectral moment of G is M-k = Sigma(n)(i=1) (lambda(i))(k). We prove that for even positive integers r, s, t, such that 4r = s + t + 2, the inequality E >= (M-r)(2) /root MsMt holds for all graphs with at least one edge, thus generalizing ail earlier result.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 50 条
  • [21] On the distance spectral radius and the distance energy of graphs
    Gungor, A. Dilek
    Bozkurt, S. Burca
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (04): : 365 - 370
  • [22] Faster spectral density calculation using energy moments
    Hartse, Jeremy
    Roggero, Alessandro
    EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (03):
  • [23] On Distance Spectral Radius and Distance Energy of Graphs
    Zhou, Bo
    Ilic, Aleksandar
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 64 (01) : 261 - 280
  • [24] Spectral moments of the edge adjacency matrix in molecular graphs. Benzenoid hydrocarbons
    Markovic, S
    Gutman, I
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (02): : 289 - 293
  • [25] Approximating total π-electron energy of phenylenes in terms of spectral moments
    Markovic, S
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2003, 42 (06): : 1304 - 1308
  • [26] On Some new bounds on the spectral radius and the energy of graphs
    Das, Prohelika
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [27] Bounds on the ABC spectral radius and ABC energy of graphs
    Ghorbani, Modjtaba
    Li, Xueliang
    Hakimi-Nezhaad, Mardjan
    Wang, Junming
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 598 : 145 - 164
  • [28] EXTREMAL GRAPHS FOR NORMALIZED LAPLACIAN SPECTRAL RADIUS AND ENERGY
    Das, Kinkar Ch.
    Sun, Shaowei
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 29 : 237 - 253
  • [29] On spectral radius and energy of extended adjacency matrix of graphs
    Das, Kinkar Ch.
    Gutman, Ivan
    Furtula, Boris
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 296 : 116 - 123
  • [30] New Upper Bounds for the Energy and Spectral Radius of Graphs
    Filipovski, Slobodan
    Jajcayt, Robert
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 84 (02) : 335 - 343