Plasmonic Photocatalysis of Urea Oxidation and Visible-Light Fuel Cells

被引:41
|
作者
An, Xingda [1 ,2 ]
Stelter, David [1 ]
Keyes, Tom [1 ]
Reinhard, Bjorn M. [1 ,2 ]
机构
[1] Boston Univ, Dept Chem, 590 Commonwealth Ave, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
来源
CHEM | 2019年 / 5卷 / 08期
基金
美国国家科学基金会;
关键词
STEERED MOLECULAR-DYNAMICS; CHEMICAL ENERGY; HOT CARRIERS; SOLAR-CELL; METAL; NANOPARTICLES; FLUORESCENCE; CONVERSION; SIZE; ABSORPTION;
D O I
10.1016/j.chempr.2019.06.014
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The intense electric (E-) field associated with the localized surface plasmon resonance (LSPR) of noble-metal nanoantennas provides a rational strategy for enhancing photoinduced charge transfer in photocatalysts. Here, we demonstrate E-field-enhanced direct photocatalytic urea oxidation and a visible-light-driven direct urea fuel cell (LDUFC) with tris(bipyridine)ruthenium(II) ([Ru(bpy)(3)](2+))-enabled plasmonic nanopigments that contain a phospholipid membrane self-assembled around a Ag nanoparticle (NP) whose LSPR overlaps the [Ru(bpy)(3)](2+) metal-to-ligand charge transfer (MLCT). In the hierarchical plasmonic nanopigment design, the membrane serves as scaffold and spacer to localize [Ru(bpy)(3)](2+) in an electromagnetic "sweet spot" where substantial plasmonic enhancement of photoexcitation is achieved while strong metal-associated quenching of the reactive excited state is avoided. The demonstration of plasmon-enhanced photocatalytic urea oxidation and the implementation of the LDUFC represent important advancements toward improved light-driven waste-water treatment and efficient solar energy conversion.
引用
收藏
页码:2228 / 2242
页数:15
相关论文
共 50 条
  • [31] Band engineering of ZnS by codoping for visible-light photocatalysis
    Hui Wan
    Liang Xu
    Wei-Qing Huang
    Gui-Fang Huang
    Chao-Ni He
    Jia-Hui Zhou
    P. Peng
    Applied Physics A, 2014, 116 : 741 - 750
  • [32] Promoting Visible-Light Photocatalysis with Palladium Species as Cocatalyst
    Li, Xiuzhen
    Zhang, Nan
    Xu, Yi-Jun
    CHEMCATCHEM, 2015, 7 (14) : 2047 - 2054
  • [33] Visible-Light Photocatalysis of the Ketyl Radical Coupling Reaction
    Xia, Qing
    Dong, Jianyang
    Song, Hongjian
    Wang, Qingmin
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (12) : 2949 - 2961
  • [34] Visible-light photocatalysis accelerates As(III) release and oxidation from arsenic-containing sludge
    Lu, Hongbo
    Liu, Xueming
    Liu, Feng
    Hao, Zhengping
    Zhang, Jing
    Lin, Zhang
    Barnett, Yvonne
    Pan, Gang
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 250 : 1 - 9
  • [35] Photocatalysis Meets Magnetism: Designing Magnetically Recoverable Supports for Visible-Light Photocatalysis
    Terra, Julio C. S.
    Desgranges, Ariane
    Monnereau, Cyrille
    Sanchez, Elena H.
    De Toro, Jose A.
    Amara, Zacharias
    Moores, Audrey
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (22) : 24895 - 24904
  • [36] Aerobic oxidation of aldehydes by visible light photocatalysis
    Iqbal, Naeem
    Choi, Sungkyu
    You, Youngmin
    Cho, Eun Jin
    TETRAHEDRON LETTERS, 2013, 54 (46) : 6222 - 6225
  • [37] Mesoporous anatase TiO2 nanocups with plasmonic metal decoration for highly active visible-light photocatalysis
    Lu, Jianwei
    Zhang, Peng
    Li, Ang
    Su, Fengli
    Wang, Tuo
    Liu, Yuan
    Gong, Jinlong
    CHEMICAL COMMUNICATIONS, 2013, 49 (52) : 5817 - 5819
  • [38] Fragment Coupling with Tertiary Radicals Generated by Visible-Light Photocatalysis
    Jamison, Christopher R.
    Overman, Larry E.
    ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (08) : 1578 - 1586
  • [39] Recent progress on doped ZnO nanostructures for visible-light photocatalysis
    Samadi, Morasae
    Zirak, Mohammad
    Naseri, Amene
    Khorashadizade, Elham
    Moshfegh, Alireza Z.
    THIN SOLID FILMS, 2016, 605 : 2 - 19
  • [40] Nanostructure sensitization of transition metal oxides for visible-light photocatalysis
    Chen, Hongjun
    Wang, Lianzhou
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2014, 5 : 696 - 710