Plasmonic Photocatalysis of Urea Oxidation and Visible-Light Fuel Cells

被引:41
|
作者
An, Xingda [1 ,2 ]
Stelter, David [1 ]
Keyes, Tom [1 ]
Reinhard, Bjorn M. [1 ,2 ]
机构
[1] Boston Univ, Dept Chem, 590 Commonwealth Ave, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
来源
CHEM | 2019年 / 5卷 / 08期
基金
美国国家科学基金会;
关键词
STEERED MOLECULAR-DYNAMICS; CHEMICAL ENERGY; HOT CARRIERS; SOLAR-CELL; METAL; NANOPARTICLES; FLUORESCENCE; CONVERSION; SIZE; ABSORPTION;
D O I
10.1016/j.chempr.2019.06.014
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The intense electric (E-) field associated with the localized surface plasmon resonance (LSPR) of noble-metal nanoantennas provides a rational strategy for enhancing photoinduced charge transfer in photocatalysts. Here, we demonstrate E-field-enhanced direct photocatalytic urea oxidation and a visible-light-driven direct urea fuel cell (LDUFC) with tris(bipyridine)ruthenium(II) ([Ru(bpy)(3)](2+))-enabled plasmonic nanopigments that contain a phospholipid membrane self-assembled around a Ag nanoparticle (NP) whose LSPR overlaps the [Ru(bpy)(3)](2+) metal-to-ligand charge transfer (MLCT). In the hierarchical plasmonic nanopigment design, the membrane serves as scaffold and spacer to localize [Ru(bpy)(3)](2+) in an electromagnetic "sweet spot" where substantial plasmonic enhancement of photoexcitation is achieved while strong metal-associated quenching of the reactive excited state is avoided. The demonstration of plasmon-enhanced photocatalytic urea oxidation and the implementation of the LDUFC represent important advancements toward improved light-driven waste-water treatment and efficient solar energy conversion.
引用
收藏
页码:2228 / 2242
页数:15
相关论文
共 50 条
  • [21] Visible-light photocatalysis of ZnO deposited on nanoporous Au
    Masataka Hakamada
    Motohiro Yuasa
    Takashi Yoshida
    Fumi Hirashima
    Mamoru Mabuchi
    Applied Physics A, 2014, 114 : 1061 - 1066
  • [22] Hydrodifluoromethylation of unactivated alkenes enabled by Visible-Light Photocatalysis
    Jha, Avishek Kumar
    Kumar, Vivek
    Perumandla, Sanjay Kumar
    Yatham, Veera Reddy
    CHEMPHOTOCHEM, 2024, 8 (06)
  • [23] Visible-light photocatalysis in doped titanium oxides.
    Asahi, R
    Morikawa, T
    Taga, Y
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U633 - U633
  • [24] Integrating TEMPO and Its Analogues with Visible-Light Photocatalysis
    Lang, Xianjun
    Zhao, Jincai
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (06) : 599 - 613
  • [25] Thiosulfonylation of Unactivated Alkenes with Visible-Light Organic Photocatalysis
    Gadde, Karthik
    Mampuys, Pieter
    Guidetti, Andrea
    Ching, H. Y. Vincent
    Herrebout, Wouter A.
    Van Doorslaer, Sabine
    Tehrani, Kourosch Abbaspour
    Maes, Bert U. W.
    ACS CATALYSIS, 2020, 10 (15): : 8765 - 8779
  • [26] Intracellular Synthesis of Indoles Enabled by Visible-Light Photocatalysis
    D'Avino, Cinzia
    Gutierrez, Sara
    Feldhaus, Max J.
    Tomas-Gamasa, Maria
    Mascarenas, Jose Luis
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (05) : 2895 - 2900
  • [27] Synthesis of fluoroalkylated alkynes via visible-light photocatalysis
    Iqbal, Naila
    Iqbal, Naeem
    Han, Sung Su
    Cho, Eun Jin
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2019, 17 (07) : 1758 - 1762
  • [28] Visible-light photocatalysis of ZnO deposited on nanoporous Au
    Hakamada, Masataka
    Yuasa, Motohiro
    Yoshida, Takashi
    Hirashima, Fumi
    Mabuchi, Mamoru
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 114 (04): : 1061 - 1066
  • [30] Increasing visible-light absorption for photocatalysis with black BiOCl
    Ye, Liqun
    Deng, Kejian
    Xu, Feng
    Tian, Lihong
    Peng, Tianyou
    Zan, Ling
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (01) : 82 - 85