Automatic segmentation of the bone and extraction of the bone-cartilage interface from magnetic resonance images of the knee

被引:82
|
作者
Fripp, Jurgen
Crozier, Stuart
Warfield, Simon K.
Ourselin, Sebastien
机构
[1] CSIRO ICT Ctr, BioMedIA Lab, Autonomous Syst Lab, Brisbane, Qld 4001, Australia
[2] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld 4072, Australia
[3] Harvard Univ, Sch Med, Childrens Hosp Boston, Computat Radiol Lab, Boston, MA 02115 USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2007年 / 52卷 / 06期
关键词
D O I
10.1088/0031-9155/52/6/005
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The accurate segmentation of the articular cartilages from magnetic resonance (MR) images of the knee is important for clinical studies and drug trials into conditions like osteoarthritis. Currently, segmentations are obtained using time-consuming manual or semi-automatic algorithms which have high inter- and intra-observer variabilities. This paper presents an important step towards obtaining automatic and accurate segmentations of the cartilages, namely an approach to automatically segment the bones and extract the bone cartilage interfaces (BCI) in the knee. The segmentation is performed using three-dimensional active shape models, which are initialized using an affine registration to an atlas. The BCI are then extracted using image information and prior knowledge about the likelihood of each point belonging to the interface. The accuracy and robustness of the approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images. The ( femur, tibia, patella) bone segmentation had a median Dice similarity coefficient of (0.96, 0.96, 0.89) and an average point-to-surface error of 0.16 mm on the BCI. The extracted BCI had a median surface overlap of 0.94 with the real interface, demonstrating its usefulness for subsequent cartilage segmentation or quantitative analysis.
引用
收藏
页码:1617 / 1631
页数:15
相关论文
共 50 条
  • [31] Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies
    Yuan, X. L.
    Meng, H. Y.
    Wang, Y. C.
    Peng, J.
    Guo, Q. Y.
    Wang, A. Y.
    Lu, S. B.
    OSTEOARTHRITIS AND CARTILAGE, 2014, 22 (08) : 1077 - 1089
  • [32] BARRIER TO MATERIAL TRANSFER AT THE BONE-CARTILAGE INTERFACE - MEASUREMENT WITH HYDROGEN GAS INVIVO
    OGATA, K
    WHITESIDE, LA
    CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 1979, (145) : 273 - 276
  • [33] Compositional and structural studies of the bone-cartilage interface using PIXE and SAXS techniques
    Kaabar, W.
    Iaklouk, A.
    Bunk, O.
    Baily, M.
    Farquharson, M. J.
    Bradley, David
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 619 (1-3): : 78 - 82
  • [34] Patch Attention U-Net for knee cartilage segmentation in magnetic resonance images
    Wang, Xiang
    Shi, Cao
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 106
  • [35] Detection of experimentally produced occult microfractures at the bone-cartilage interface in decalcified sections
    Atkinson, PJ
    Walsh, JA
    Haut, RC
    BIOTECHNIC & HISTOCHEMISTRY, 1999, 74 (01) : 27 - 33
  • [36] A new approach to automatic segmentation of bone in medical magnetic resonance imaging
    Pérez, G
    Diez, RM
    Hernández, JA
    Martín, JS
    BIOLOGICAL AND MEDICAL DATA ANALYSIS, PROCEEDINGS, 2004, 3337 : 21 - 26
  • [37] Automatic segmentation of the glenohumeral cartilages from magnetic resonance images
    Neubert, A.
    Yang, Z.
    Engstrom, C.
    Xia, Y.
    Strudwick, M. W.
    Chandra, S. S.
    Fripp, J.
    Crozier, S.
    MEDICAL PHYSICS, 2016, 43 (10) : 5370 - 5379
  • [38] A practical method for muscles extraction and automatic segmentation of leg magnetic resonance images
    Wang, Changming
    Guo, Xiaojuan
    Yao, Li
    Li, Ke
    Jin, Zhen
    2007 IEEE/ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING, VOLS 1-4, 2007, : 885 - 890
  • [39] Automatic Segmentation of Bone Canals in Histological Images
    Campos Cunha Gondim, Pedro Henrique
    Justino Oliveira Limirio, Pedro Henrique
    Rocha, Flaviana Soares
    Batista, Jonas Dantas
    Dechichi, Paula
    Nassif Travencolo, Bruno Augusto
    Backes, Andre Ricardo
    JOURNAL OF DIGITAL IMAGING, 2021, 34 (03) : 678 - 690
  • [40] Automatic Segmentation of Bone Canals in Histological Images
    Pedro Henrique Campos Cunha Gondim
    Pedro Henrique Justino Oliveira Limirio
    Flaviana Soares Rocha
    Jonas Dantas Batista
    Paula Dechichi
    Bruno Augusto Nassif Travençolo
    André Ricardo Backes
    Journal of Digital Imaging, 2021, 34 : 678 - 690