THE EULER-POINCARE THEORY OF METAMORPHOSIS

被引:42
|
作者
Holm, Darryl D. [1 ,2 ]
Trouve, Alain [3 ]
Younes, Laurent [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Ecole Normale Super, CMLA, CNRS, URA 1611, F-94235 Cachan, France
[4] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA
关键词
Groups of diffeomorphisms; EPDiff; image registration; shape analysis; deformable templates; DIFFEOMORPHISMS; EQUATIONS; FLOWS; SPACE;
D O I
10.1090/S0033-569X-09-01134-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the pattern matching approach to imaging science, the process of "metamorphosis" is template matching with dynamical templates (Trouve and Younes, Found. Comp. Math., 2005). Here, we recast the metamorphosis equations of that paper into the Euler-Poincare variational framework of Holm, Marsden, and Ratiu, Adv. in Math., 1998 and show that the metamorphosis equations contain the equations for a perfect complex fluid (Holm, Springer, 2002). This result connects the ideas underlying the process of metamorphosis in image matching to the physical concept of an order parameter in the theory of complex fluids. After developing the general theory, we reinterpret various examples, including point set, image and density metamorphosis. We finally discuss the issue of matching measures with metamorphosis, for which we provide existence theorems for the initial and boundary value problems.
引用
收藏
页码:661 / 685
页数:25
相关论文
共 50 条
  • [41] An Euler-Poincare formula for a depth zero Bernstein projector
    Barbasch, Dan
    Ciubotaru, Dan
    Moy, Allen
    REPRESENTATION THEORY, 2019, 23 : 154 - 187
  • [42] The Clifford-cyclotomic group and Euler-Poincare characteristics
    Ingalls, Colin
    Jordan, Bruce W.
    Keeton, Allan
    Logan, Adam
    Zaytman, Yevgeny
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (03): : 651 - 666
  • [44] The Euler-Poincare characteristic of joint reductions and mixed multiplicities
    Truong Thi Hong Thanh
    Duong Quoc Viet
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (02)
  • [45] Estimation of the number of alveolar capillaries by the Euler number (Euler-Poincare characteristic)
    Willfuehr, Alper
    Brandenberger, Christina
    Piatkowski, Tanja
    Grothausmann, Roman
    Nyengaard, Jens Randel
    Ochs, Matthias
    Muehlfeld, Christian
    AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2015, 309 (11) : L1286 - L1293
  • [46] How Euler would compute the Euler-Poincare characteristic of a Lie superalgebra
    Zusmanovich, Pasha
    EXPOSITIONES MATHEMATICAE, 2011, 29 (03) : 345 - 360
  • [47] EULER-POINCARE CHARACTERISTIC FOR LOCALLY HOMOGENEOUS AND COMPLEX SPACES
    BOCHNER, S
    ANNALS OF MATHEMATICS, 1950, 51 (02) : 241 - 261
  • [48] IMPLICATIONS OF EULER-POINCARE CHARACTERISTIC FOR COMPLETE INTERSECTION MANIFOLDS
    CHEN, BY
    OGIUE, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) : 1 - 8
  • [49] COMPLETE INTERSECTION MANIFOLDS WITH EXTREMAL EULER-POINCARE CHARACTERISTICS
    CHEN, BY
    OGIUE, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 50 (JUL) : 121 - 126
  • [50] EULER-POINCARE AND PONTRJAGIN CHARACTERISTIC CLASSES OF PSEUDORIEMANNIAN MANIFOLDS
    LEVINE, J
    ZUND, JD
    TENSOR, 1970, 21 (02): : 250 - &