THE EULER-POINCARE THEORY OF METAMORPHOSIS

被引:42
|
作者
Holm, Darryl D. [1 ,2 ]
Trouve, Alain [3 ]
Younes, Laurent [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Ecole Normale Super, CMLA, CNRS, URA 1611, F-94235 Cachan, France
[4] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA
关键词
Groups of diffeomorphisms; EPDiff; image registration; shape analysis; deformable templates; DIFFEOMORPHISMS; EQUATIONS; FLOWS; SPACE;
D O I
10.1090/S0033-569X-09-01134-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the pattern matching approach to imaging science, the process of "metamorphosis" is template matching with dynamical templates (Trouve and Younes, Found. Comp. Math., 2005). Here, we recast the metamorphosis equations of that paper into the Euler-Poincare variational framework of Holm, Marsden, and Ratiu, Adv. in Math., 1998 and show that the metamorphosis equations contain the equations for a perfect complex fluid (Holm, Springer, 2002). This result connects the ideas underlying the process of metamorphosis in image matching to the physical concept of an order parameter in the theory of complex fluids. After developing the general theory, we reinterpret various examples, including point set, image and density metamorphosis. We finally discuss the issue of matching measures with metamorphosis, for which we provide existence theorems for the initial and boundary value problems.
引用
收藏
页码:661 / 685
页数:25
相关论文
共 50 条
  • [21] GRADED ALGEBRAS AND THEIR EULER-POINCARE SERIES
    GRUNENFELDER, L
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1987, 46 (2-3) : 165 - 178
  • [22] THE EULER-POINCARE CHARACTERISTIC AND MIXED MULTIPLICITIES
    Duong Quoc Viet
    Truong Thi Hong Thanh
    KYUSHU JOURNAL OF MATHEMATICS, 2015, 69 (02) : 393 - 411
  • [23] AN EULER-POINCARE CHARACTERISTIC FOR IMPROPER INTERSECTIONS
    STUCKRAD, J
    VOGEL, W
    MATHEMATISCHE ANNALEN, 1986, 274 (02) : 257 - 271
  • [24] Euler-Poincare reduction on frame bundles
    Brajercik, J.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 : S33 - S40
  • [25] An Euler-Poincare bound for equicharacteristic etale sheaves
    Miller, Carl A.
    ALGEBRA & NUMBER THEORY, 2010, 4 (01) : 21 - 45
  • [26] Asymptotic stabilization of Euler-Poincare mechanical systems
    Bloch, AM
    Chang, DE
    Leonard, NE
    Marsden, JE
    Woolsey, C
    LAGRANGIAN AND HAMILTONIAN METHODS FOR NONLINEAR CONTROL, 2000, : 51 - 56
  • [27] Computing the Euler-Poincare characteristics of sign conditions
    Basu, S
    Pollack, R
    Roy, MF
    COMPUTATIONAL COMPLEXITY, 2005, 14 (01) : 53 - 71
  • [28] 93.11 Alternating signs in the Euler-Poincare formula
    Jung, Iyoung Michelle
    Kim, Sung Soo
    MATHEMATICAL GAZETTE, 2009, 93 (526): : 109 - +
  • [29] Euler-Poincare characteristics of classes of disordered media
    Arns, CH
    Knackstedt, MA
    Pinczewski, WV
    Mecke, KR
    PHYSICAL REVIEW E, 2001, 63 (03): : 311121 - 3111213
  • [30] The Euler-Poincare equations and double bracket dissipation
    Bloch, A
    Krishnaprasad, PS
    Marsden, JE
    Ratiu, TS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) : 1 - 42