CO2 Capture by Supported Ionic Liquid Phase: Highlighting the Role of the Particle Size

被引:27
|
作者
Santiago, Ruben [1 ]
Lemus, Jesus [1 ]
Hospital-Benito, Daniel [1 ]
Moya, Cristian [1 ]
Bedia, Jorge [1 ]
Alonso-Morales, Noelia [1 ]
Rodriguez, Juan J. [1 ]
Palomar, Jose [1 ]
机构
[1] Univ Autonoma Madrid, Chem Engn Dept, C Francisco Torris & Valiente 7, E-28049 Madrid, Spain
关键词
CO2; capture; Ionic liquids; SILP; Fixed-bed; Particle size; Kinetics; HETEROCYCLIC ANION AHA; CARBON CAPTURE; ADSORPTION; SOLUBILITY; KINETICS; THERMODYNAMICS; DIFFUSION; SOLVENTS; DIOXIDE;
D O I
10.1021/acssuschemeng.9b02277
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO2 capture by fixed-bed sorption has been evaluated using Supported Ionic Liquid Phase (SILP) based on the ionic liquid 1-butyl-3-methylimidazolium acetate ([bmim][acetate]). The SILP sorbent was prepared with three remarkably different mean particle sizes and characterized by porous texture, morphology, thermal stability, and elemental composition. The thermodynamics and kinetics of the CO2 capture process has been studied, testing the effects of SILP particle size, sorption temperature, gas flow rate, and CO2 partial pressure. The CO2 sorption isotherms at different temperatures were obtained by gravimetric measurements, revealing that the equilibrium sorption capacity is only due to the IL incorporated on the silica support of SILP. The experimental isotherms were successfully fitted to the Langmuir-Freundlich model. Fixed-bed experiments of CO2 capture were carried out to evaluate the performance of the SILP sorbents at different operating conditions. All the breakthrough curves were well described by a linear driving force model. The obtained kinetic coefficients revealed that the CO2 sorption rate in fixed-bed linearly increases when decreasing the SILP particle size and increasing the operating temperature. Higher CO(2 )partial pressure in the inlet gas stream led to a faster mass transfer rate, affecting both the mass transfer driving force and kinetic coefficient. Aspen Adsorption simulator was successfully applied to model the fixed-bed operation, highlighting the role of the particle size on separation efficiency. Simulations results indicate that at very low CO2 partial pressure chemical absorption is the controlling step, while increasing that partial pressure shifts the regime toward diffusion into the SILP. This methodology will allow designing CO2 sorption systems based on SILPs that fulfill the separation requirements at given conditions (CO2 partial pressure and temperature), minimizing the SILP needs by optimizing the particle size and type of IL.
引用
收藏
页码:13089 / 13097
页数:17
相关论文
共 50 条
  • [31] Capsules with polyurea shells and ionic liquid cores for CO2 capture
    Gaur, Samanvaya S.
    Edgehouse, Katelynn J.
    Klemm, Aidan
    Wei, Peiran
    Gurkan, Burcu
    Pentzer, Emily B.
    JOURNAL OF POLYMER SCIENCE, 2021, 59 (23) : 2980 - 2989
  • [32] Molecular dynamics simulations of a dicationic ionic liquid for CO2 capture
    Feider, Nicole Onishi
    Mahurin, Shannon M.
    Chi-Linh Do-Thanh
    Dai, Sheng
    Jiang, De-en
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 335
  • [33] Synthesis and CO2 capture properties of a novel poly(ionic liquid)
    School of Material, Nanchang Hangkong University, Nanchang
    330063, China
    Gao Xiao Hua Xue Gong Cheng Xue Bao, 1 (226-231):
  • [34] Poly(ionic liquid)-Based Nanocomposites and Their Performance in CO2 Capture
    Cheng, Hua
    Wang, Ping
    Luo, Jiangshui
    Fransaer, Jan
    De Vos, Dirk E.
    Luo, Zheng-Hong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (12) : 3107 - 3115
  • [35] CO2 Capture Using Amine Solution Mixed with Ionic Liquid
    Yang, Jie
    Yu, Xinhai
    Yan, Jinyue
    Tu, Shan-Tung
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (07) : 2790 - 2799
  • [36] Poly(ionic liquid)s: Platform for CO2 capture and catalysis
    Zhou, Xianjing
    Weber, Jens
    Yuan, Jiayin
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 39 - 46
  • [37] Ionic liquid-formulated hybrid solvents for CO2 capture
    Huang, Kuan
    Chen, Feng-Feng
    Tao, Duan-Jian
    Dai, Sheng
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2017, 5 : 67 - 73
  • [38] Poly(ionic liquid)s Nanoparticles Applied in CO2 Capture
    Fernandez, Marisol
    Carreno, Luz Angela
    Bernard, Franciele
    Ligabue, Rosane
    Einloft, Sandra
    MACROMOLECULAR SYMPOSIA, 2016, 368 (01) : 98 - 106
  • [39] CO2 capture with complex absorbent of ionic liquid, surfactant and water
    Zhang, Wenting
    Ye, Longtao
    Jiang, Juncheng
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2015, 3 (01): : 227 - 232
  • [40] Mechanistic insights on ionic liquid and poly(ionic liquid) solutions for CO2 capture and cycloaddition reactions
    Barrulas, Raquel, V
    Barao, Rodrigo M.
    Bernardes, Carlos E. S.
    Zanatta, Marcileia
    Corvo, Marta C.
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2025, 15