CO2 Capture by Supported Ionic Liquid Phase: Highlighting the Role of the Particle Size

被引:27
|
作者
Santiago, Ruben [1 ]
Lemus, Jesus [1 ]
Hospital-Benito, Daniel [1 ]
Moya, Cristian [1 ]
Bedia, Jorge [1 ]
Alonso-Morales, Noelia [1 ]
Rodriguez, Juan J. [1 ]
Palomar, Jose [1 ]
机构
[1] Univ Autonoma Madrid, Chem Engn Dept, C Francisco Torris & Valiente 7, E-28049 Madrid, Spain
关键词
CO2; capture; Ionic liquids; SILP; Fixed-bed; Particle size; Kinetics; HETEROCYCLIC ANION AHA; CARBON CAPTURE; ADSORPTION; SOLUBILITY; KINETICS; THERMODYNAMICS; DIFFUSION; SOLVENTS; DIOXIDE;
D O I
10.1021/acssuschemeng.9b02277
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO2 capture by fixed-bed sorption has been evaluated using Supported Ionic Liquid Phase (SILP) based on the ionic liquid 1-butyl-3-methylimidazolium acetate ([bmim][acetate]). The SILP sorbent was prepared with three remarkably different mean particle sizes and characterized by porous texture, morphology, thermal stability, and elemental composition. The thermodynamics and kinetics of the CO2 capture process has been studied, testing the effects of SILP particle size, sorption temperature, gas flow rate, and CO2 partial pressure. The CO2 sorption isotherms at different temperatures were obtained by gravimetric measurements, revealing that the equilibrium sorption capacity is only due to the IL incorporated on the silica support of SILP. The experimental isotherms were successfully fitted to the Langmuir-Freundlich model. Fixed-bed experiments of CO2 capture were carried out to evaluate the performance of the SILP sorbents at different operating conditions. All the breakthrough curves were well described by a linear driving force model. The obtained kinetic coefficients revealed that the CO2 sorption rate in fixed-bed linearly increases when decreasing the SILP particle size and increasing the operating temperature. Higher CO(2 )partial pressure in the inlet gas stream led to a faster mass transfer rate, affecting both the mass transfer driving force and kinetic coefficient. Aspen Adsorption simulator was successfully applied to model the fixed-bed operation, highlighting the role of the particle size on separation efficiency. Simulations results indicate that at very low CO2 partial pressure chemical absorption is the controlling step, while increasing that partial pressure shifts the regime toward diffusion into the SILP. This methodology will allow designing CO2 sorption systems based on SILPs that fulfill the separation requirements at given conditions (CO2 partial pressure and temperature), minimizing the SILP needs by optimizing the particle size and type of IL.
引用
收藏
页码:13089 / 13097
页数:17
相关论文
共 50 条
  • [21] Synthesis and CO2 capture properties of poly(ionic liquid)
    Xu, Haitao
    Liao, Jianhua
    Liang, Hongbo
    Xing, Yuepeng
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2014, 30 (10): : 154 - 158
  • [22] Hybrid ionic liquid capsules for rapid CO2 capture
    Huang, Qianwen
    Luo, Qinmo
    Wang, Yifei
    Pentzer, Emily
    Gurkan, Burcu
    Industrial and Engineering Chemistry Research, 2019, 58 (24):
  • [23] A Review of CO2 Capture by Poly(Ionic liquid)s
    Soni, Rajdip
    Biswas, Rima
    Recent Innovations in Chemical Engineering, 2022, 15 (02) : 72 - 85
  • [24] Ionic Liquid Membranes Supported by Hydrophobic and Hydrophilic Metal-Organic Frameworks for CO2 Capture
    Gupta, Krishna M.
    Chen, Yifei
    Jiang, Jianwen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (11): : 5792 - 5799
  • [25] CO2 capture using supported amino acid ionic liquids
    Wang, Xianfeng
    Akhmedov, Novruz G.
    Duan, Yuhua
    Luebke, David
    Li, Bingyun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [26] Metal-organic framework supported ionic liquid membranes for CO2 capture: anion effects
    Gupta, Krishna M.
    Chen, Yifei
    Hu, Zhongqiao
    Jiang, Jianwen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (16) : 5785 - 5794
  • [27] Structure design of photosensitive ionic liquid for CO2 capture
    Zhang, Ruinan
    Guo, Yandong
    Cao, Bobo
    Lu, Yumiao
    Dong, Haifeng
    Huo, Feng
    Ding, Wei-Lu
    CHEMICAL ENGINEERING SCIENCE, 2025, 305
  • [28] Hybrid Ionic Liquid Capsules for Rapid CO2 Capture
    Huang, Qanwen
    Luo, Qinmo
    Wang, Yifei
    Pentzer, Emily
    Gurkan, Burcu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (24) : 10503 - 10509
  • [29] CO2 uptake in supported ionic liquids phase materials
    Kolding, Helene
    Riisager, Anders
    Fehrmann, Rasmus
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [30] Design of Supported Ionic Liquid Membranes for CO2 Capture Using a Generative AI-Based Approach
    Ismail, Sarang
    Safari, Habibollah
    Bavarian, Mona
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2025, : 4439 - 4449