Parametric Dictionary Design for Sparse Coding

被引:79
|
作者
Yaghoobi, Mehrdad [1 ,2 ]
Daudet, Laurent [3 ]
Davies, Mike E. [1 ,2 ]
机构
[1] Univ Edinburgh, Inst Digital Commun, Edinburgh EH9 3JL, Midlothian, Scotland
[2] Univ Edinburgh, Joint Res Inst Signal & Image Proc, Edinburgh EH9 3JL, Midlothian, Scotland
[3] Univ Paris 06, Mus Acoust Lab LAM, Paris, France
基金
英国工程与自然科学研究理事会;
关键词
Dictionary design; exact sparse recovery; Gammatone filter banks; incoherent dictionary; parametric dictionary; sparse approximation; MATCHING PURSUITS; AUDITORY FILTER; TIME-DOMAIN; REPRESENTATIONS; CONVERGENCE;
D O I
10.1109/TSP.2009.2026610
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a new dictionary design method for sparse coding of a class of signals. It has been shown that one can sparsely approximate some natural signals using an overcomplete set of parametric functions. A problem in using these parametric dictionaries is how to choose the parameters. In practice, these parameters have been chosen by an expert or through a set of experiments. In the sparse approximation context, it has been shown that an incoherent dictionary is appropriate for the sparse approximation methods. In this paper, we first characterize the dictionary design problem, subject to a constraint on the dictionary. Then we briefly explain that equiangular tight frames have minimum coherence. The complexity of the problem does not allow it to be solved exactly. We introduce a practical method to approximately solve it. Some experiments show the advantages one gets by using these dictionaries.
引用
收藏
页码:4800 / 4810
页数:11
相关论文
共 50 条
  • [21] Weak correlation dictionary construction method for sparse coding
    Long H.
    Zhuo L.
    Qu P.
    Zhang J.
    Journal of Shanghai Jiaotong University (Science), 2017, 22 (1) : 77 - 81
  • [22] Sparse Coding and Dictionary Learning with Linear Dynamical Systems
    Huang, Wenbing
    Sun, Fuchun
    Cao, Lele
    Zhao, Deli
    Liu, Huaping
    Harandi, Mehrtash
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3938 - 3947
  • [23] Weak Correlation Dictionary Construction Method for Sparse Coding
    龙海霞
    卓力
    屈盼玲
    张菁
    Journal of Shanghai Jiaotong University(Science), 2017, 22 (01) : 77 - 81
  • [24] Sparse representation by dictionary combined convolutional sparse coding and K-SVD
    Lian, Qiu-Sheng
    Han, Dong-Mei
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2012, 34 (07): : 1493 - 1498
  • [25] Joint reconstruction of dynamic PET activity and kinetic parametric images using total variation constrained dictionary sparse coding
    Yu, Haiqing
    Chen, Shuhang
    Chen, Yunmei
    Liu, Huafeng
    INVERSE PROBLEMS, 2017, 33 (05)
  • [26] STRUCTURED AND INCOHERENT PARAMETRIC DICTIONARY DESIGN
    Yaghoobi, Mehrdad
    Daudet, Laurent
    Davies, Michael E.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 5486 - 5489
  • [27] LEARNING AN ADAPTIVE DICTIONARY STRUCTURE FOR EFFICIENT IMAGE SPARSE CODING
    Mazaheri, Jeremy Aghaei
    Guillemot, Christine
    labit, ClauDe
    2013 PICTURE CODING SYMPOSIUM (PCS), 2013, : 1 - 4
  • [28] Online Convolutional Sparse Coding with Sample-Dependent Dictionary
    Wang, Yaqing
    Yao, Quanming
    Kwok, James T.
    Ni, Lionel M.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [29] DICTIONARY-BASED TENSOR-TRAIN SPARSE CODING
    Boudehane, Abdelhak
    Zniyed, Yassine
    Tenenhaus, Arthur
    Le Brusquet, Laurent
    Boyer, Remy
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1000 - 1004
  • [30] Co-Design of Sparse Coding and Dictionary Learning for Real-Time Physiological Signals Monitoring
    Chen, Kuan-Chun
    Chou, Ching-Yao
    Wu, An-Yeu
    PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS 2019), 2019, : 347 - 351