STRUCTURED AND INCOHERENT PARAMETRIC DICTIONARY DESIGN

被引:3
|
作者
Yaghoobi, Mehrdad [1 ]
Daudet, Laurent [2 ]
Davies, Michael E. [1 ]
机构
[1] Univ Edinburgh, Inst Digital Commun IDCom, Edinburgh EH9 3JL, Midlothian, Scotland
[2] Univ Paris 07, ESPCI, UMR 7587, Inst Langevin LOA, F-75231 Paris, France
基金
英国工程与自然科学研究理事会;
关键词
Sparse Approximation; Dictionary Selection; Parametric Dictionary Design; Structured Dictionary; FRAMES;
D O I
10.1109/ICASSP.2010.5495207
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A new dictionary selection approach for sparse coding, called parametric dictionary design, has recently been introduced. The aim is to choose a dictionary from a class of admissible dictionaries which can be presented parametrically. The designed dictionary satisfies a constraint, here the incoherence property, which can help conventional sparse coding methods to find sparser solutions in average. In this paper, an extra constraint will be applied on the parametric dictionaries to find a structured dictionary. Various structures can be imposed on dictionaries to promote a correlation between the atoms. We intentionally choose a structure to implement the dictionary using a set of filter banks. This indeed helps to implement the dictionary-signal multiplications more efficiently. The price we pay for the extra structure is that the designed dictionary is not as incoherent as unstructured parametric designed dictionaries.
引用
收藏
页码:5486 / 5489
页数:4
相关论文
共 50 条
  • [1] Parametric Dictionary Design for Sparse Coding
    Yaghoobi, Mehrdad
    Daudet, Laurent
    Davies, Mike E.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (12) : 4800 - 4810
  • [2] Parametric Robust Structured Control Design
    Apkarian, Pierre
    Minh Ngoc Dao
    Noll, Dominikus
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (07) : 1857 - 1869
  • [3] Incoherent frames design and dictionary learning using a distance barrier
    Ilie-Ablachim, Denis C.
    Dumitrescu, Bogdan
    SIGNAL PROCESSING, 2023, 209
  • [4] Learning Structured Twin-Incoherent Twin-Projective Latent Dictionary Pairs for Classification
    Zhang, Zhao
    Sun, Yulin
    Zhang, Zheng
    Wang, Yang
    Liu, Guangcan
    Wang, Meng
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 836 - 845
  • [5] Learning Incoherent Subspaces: Classification via Incoherent Dictionary Learning
    Daniele Barchiesi
    Mark D. Plumbley
    Journal of Signal Processing Systems, 2015, 79 : 189 - 199
  • [6] Learning Incoherent Subspaces: Classification via Incoherent Dictionary Learning
    Barchiesi, Daniele
    Plumbley, Mark D.
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2015, 79 (02): : 189 - 199
  • [7] Optimization over finite frame varieties and structured dictionary design
    Strawn, Nate
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 32 (03) : 413 - 434
  • [8] Incoherent Dictionary Learning for Sparse Representation
    Lin, Tong
    Liu, Shi
    Zha, Hongbin
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1237 - 1240
  • [9] OPTIMAL DESIGN OF INCOHERENT TUNABLE-FREQUENCY STRUCTURED ILLUMINATION MICROSCOPE SCHEME
    Sola-Pikabea, J.
    Doblas, A.
    Saavedra, G.
    Martinez-Corral, M.
    Preza, C.
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 449 - 452
  • [10] Ship Classification Based on MSHOG Feature and Task-Driven Dictionary Learning with Structured Incoherent Constraints in SAR Images
    Lin, Huiping
    Song, Shengli
    Yang, Jian
    REMOTE SENSING, 2018, 10 (02)