Parametric Dictionary Design for Sparse Coding

被引:79
|
作者
Yaghoobi, Mehrdad [1 ,2 ]
Daudet, Laurent [3 ]
Davies, Mike E. [1 ,2 ]
机构
[1] Univ Edinburgh, Inst Digital Commun, Edinburgh EH9 3JL, Midlothian, Scotland
[2] Univ Edinburgh, Joint Res Inst Signal & Image Proc, Edinburgh EH9 3JL, Midlothian, Scotland
[3] Univ Paris 06, Mus Acoust Lab LAM, Paris, France
基金
英国工程与自然科学研究理事会;
关键词
Dictionary design; exact sparse recovery; Gammatone filter banks; incoherent dictionary; parametric dictionary; sparse approximation; MATCHING PURSUITS; AUDITORY FILTER; TIME-DOMAIN; REPRESENTATIONS; CONVERGENCE;
D O I
10.1109/TSP.2009.2026610
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a new dictionary design method for sparse coding of a class of signals. It has been shown that one can sparsely approximate some natural signals using an overcomplete set of parametric functions. A problem in using these parametric dictionaries is how to choose the parameters. In practice, these parameters have been chosen by an expert or through a set of experiments. In the sparse approximation context, it has been shown that an incoherent dictionary is appropriate for the sparse approximation methods. In this paper, we first characterize the dictionary design problem, subject to a constraint on the dictionary. Then we briefly explain that equiangular tight frames have minimum coherence. The complexity of the problem does not allow it to be solved exactly. We introduce a practical method to approximately solve it. Some experiments show the advantages one gets by using these dictionaries.
引用
收藏
页码:4800 / 4810
页数:11
相关论文
共 50 条
  • [1] Submodular Dictionary Learning for Sparse Coding
    Jiang, Zhuolin
    Zhang, Guangxiao
    Davis, Larry S.
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 3418 - 3425
  • [2] Sparse representation based on parametric impulsive dictionary design for bearing fault diagnosis
    Sun, Ruo-Bin
    Yang, Zhi-Bo
    Zhai, Zhi
    Chen, Xue-Feng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 122 : 737 - 753
  • [3] DICTIONARY LEARNING AND SPARSE CODING FOR UNSUPERVISED CLUSTERING
    Sprechmann, Pablo
    Sapiro, Guillermo
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2042 - 2045
  • [4] Confident Kernel Sparse Coding and Dictionary Learning
    Hosseini, K.
    Hammer, Barbara
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 1031 - 1036
  • [5] PERFORMANCE LIMITS OF DICTIONARY LEARNING FOR SPARSE CODING
    Jung, Alexander
    Eldar, Yonina C.
    Goertz, Norbert
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 765 - 769
  • [6] An MDL Framework for Sparse Coding and Dictionary Learning
    Ramirez, Ignacio
    Sapiro, Guillermo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2913 - 2927
  • [7] COVARIATE-DEPENDENT DICTIONARY LEARNING AND SPARSE CODING
    Zhou, Mingyuan
    Yang, Hongxia
    Sapiro, Guillermo
    Dunson, David
    Carin, Lawrence
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 5824 - 5827
  • [8] Optimization of learned dictionary for sparse coding in speech processing
    He, Yongjun
    Sun, Guanglu
    Han, Jiqing
    NEUROCOMPUTING, 2016, 173 : 471 - 482
  • [9] Joint Multiple Dictionary Learning for Tensor Sparse Coding
    Fu, Yifan
    Gao, Junbin
    Sun, Yanfeng
    Hong, Xia
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2957 - 2964
  • [10] Dictionary Learning for Sparse Coding: Algorithms and Convergence Analysis
    Bao, Chenglong
    Ji, Hui
    Quan, Yuhui
    Shen, Zuowei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (07) : 1356 - 1369