Pseudo orthogonal Latin squares

被引:1
|
作者
Faruqi, Shahab [1 ]
Katre, S. A. [2 ]
Garg, Manisha [3 ]
机构
[1] Natl Def Acad, Pune, Maharashtra, India
[2] SP Pune Univ, Pune, Maharashtra, India
[3] Univ Illinois, Dept Math, Urbana, IL USA
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2021年 / 31卷 / 01期
关键词
Latin squares; clique partition number; intersection number;
D O I
10.1515/dma-2021-0002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two Latin squares A, B of order n are called pseudo orthogonal if for any 1 <= i, j <= n there exists a k, 1 <= k <= n, such that A(i, k) = B(j, k). We prove that the existence of a family of m mutually pseudo orthogonal Latin squares of order n is equivalent to the existence of a family of m mutually orthogonal Latin squares of order n. We also obtain exact values of clique partition numbers of several classes of complete multipartite graphs and of the tensor product of complete graphs.
引用
收藏
页码:5 / 17
页数:13
相关论文
共 50 条
  • [41] Existence of weakly pandiagonal orthogonal Latin squares
    Yong Zhang
    Wen Li
    Jian Guo Lei
    Acta Mathematica Sinica, English Series, 2013, 29 : 1089 - 1094
  • [42] SOME NEW CONJUGATE ORTHOGONAL LATIN SQUARES
    BENNETT, FE
    WU, LS
    ZHU, L
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 46 (02) : 314 - 318
  • [43] Mutually orthogonal latin squares with large holes
    Dukes, Peter J.
    van Bommel, Christopher M.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 159 : 81 - 89
  • [44] CONJUGATE ORTHOGONAL LATIN SQUARES AND MENDELSOHN DESIGNS
    BENNETT, FE
    ARS COMBINATORIA, 1985, 19 (JUN) : 51 - 62
  • [45] INCOMPLETE CONJUGATE ORTHOGONAL IDEMPOTENT LATIN SQUARES
    BENNETT, FE
    ZHU, L
    DISCRETE MATHEMATICS, 1987, 65 (01) : 5 - 21
  • [46] Existence of conjugate orthogonal diagonal Latin squares
    Bennett, FE
    Du, B
    Zhang, H
    JOURNAL OF COMBINATORIAL DESIGNS, 1997, 5 (06) : 449 - 461
  • [47] A sudoku solution from orthogonal Latin squares
    Stevens, Brett
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (09): : 839 - 840
  • [48] Enumerating extensions of mutually orthogonal Latin squares
    Boyadzhiyska, Simona
    Das, Shagnik
    Szabo, Tibor
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (10) : 2187 - 2206
  • [49] Maximal sets of mutually orthogonal Latin squares
    Drake, DA
    van Rees, GHJ
    Wallis, WD
    DISCRETE MATHEMATICS, 1999, 194 (1-3) : 87 - 94
  • [50] The existence of latin squares without orthogonal mates
    Wanless, Ian M.
    Webb, Bridget S.
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 40 (01) : 131 - 135