Pseudo orthogonal Latin squares

被引:1
|
作者
Faruqi, Shahab [1 ]
Katre, S. A. [2 ]
Garg, Manisha [3 ]
机构
[1] Natl Def Acad, Pune, Maharashtra, India
[2] SP Pune Univ, Pune, Maharashtra, India
[3] Univ Illinois, Dept Math, Urbana, IL USA
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2021年 / 31卷 / 01期
关键词
Latin squares; clique partition number; intersection number;
D O I
10.1515/dma-2021-0002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two Latin squares A, B of order n are called pseudo orthogonal if for any 1 <= i, j <= n there exists a k, 1 <= k <= n, such that A(i, k) = B(j, k). We prove that the existence of a family of m mutually pseudo orthogonal Latin squares of order n is equivalent to the existence of a family of m mutually orthogonal Latin squares of order n. We also obtain exact values of clique partition numbers of several classes of complete multipartite graphs and of the tensor product of complete graphs.
引用
收藏
页码:5 / 17
页数:13
相关论文
共 50 条
  • [31] SELF-ORTHOGONAL LATIN SQUARES
    BRAYTON, RK
    COPPERSM.D
    HOFFMAN, AJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A513 - A513
  • [32] EMBEDDING ORTHOGONAL PARTIAL LATIN SQUARES
    LINDNER, CC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A37 - A37
  • [33] 7 MUTUALLY ORTHOGONAL LATIN SQUARES
    WOJTAS, M
    DISCRETE MATHEMATICS, 1977, 20 (02) : 193 - 201
  • [34] COMPLETES SETS OF ORTHOGONAL LATIN SQUARES
    ALDRIDGE, AG
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (01): : 96 - &
  • [35] Embedding partial Latin squares in Latin squares with many mutually orthogonal mates
    Donovan, Diane
    Grannell, Mike
    Yazici, Emine Sule
    DISCRETE MATHEMATICS, 2020, 343 (06)
  • [36] Latin Squares without Orthogonal Mates
    Anthony B. Evans
    Designs, Codes and Cryptography, 2006, 40 : 121 - 130
  • [37] Embedding a latin square in a pair of orthogonal latin squares
    Jenkins, Peter
    JOURNAL OF COMBINATORIAL DESIGNS, 2006, 14 (04) : 270 - 276
  • [38] INFINITE LATIN SQUARES CONTAINING NESTED SETS OF MUTUALLY ORTHOGONAL FINITE LATIN SQUARES
    BRAWLEY, JV
    MULLEN, GL
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1991, 39 (1-2): : 135 - 141
  • [39] Complete sets of orthogonal, self-orthogonal Latin squares
    Graham, GP
    Roberts, CE
    ARS COMBINATORIA, 2002, 64 : 193 - 198
  • [40] F-SQUARE AND ORTHOGONAL F-SQUARES DESIGN - GENERALIZATION OF LATIN SQUARE AND ORTHOGONAL LATIN SQUARES DESIGN
    HEDAYAT, A
    SEIDEN, E
    ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (06): : 2035 - 2044