Pseudo orthogonal Latin squares

被引:1
|
作者
Faruqi, Shahab [1 ]
Katre, S. A. [2 ]
Garg, Manisha [3 ]
机构
[1] Natl Def Acad, Pune, Maharashtra, India
[2] SP Pune Univ, Pune, Maharashtra, India
[3] Univ Illinois, Dept Math, Urbana, IL USA
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2021年 / 31卷 / 01期
关键词
Latin squares; clique partition number; intersection number;
D O I
10.1515/dma-2021-0002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two Latin squares A, B of order n are called pseudo orthogonal if for any 1 <= i, j <= n there exists a k, 1 <= k <= n, such that A(i, k) = B(j, k). We prove that the existence of a family of m mutually pseudo orthogonal Latin squares of order n is equivalent to the existence of a family of m mutually orthogonal Latin squares of order n. We also obtain exact values of clique partition numbers of several classes of complete multipartite graphs and of the tensor product of complete graphs.
引用
收藏
页码:5 / 17
页数:13
相关论文
共 50 条
  • [1] The Search for Pseudo Orthogonal Latin Squares of Order Six
    Frans C. Bussemaker
    Willem H. Haemers
    Edward Spence
    Designs, Codes and Cryptography, 2000, 21 : 77 - 82
  • [2] The search for pseudo orthogonal Latin squares of order six
    Bussemaker, FC
    Haemers, WH
    Spence, E
    DESIGNS CODES AND CRYPTOGRAPHY, 2000, 21 (1-3) : 77 - 82
  • [3] Difference Covering Arrays and Pseudo-Orthogonal Latin Squares
    Fatih Demirkale
    Diane Donovan
    Joanne Hall
    Abdollah Khodkar
    Asha Rao
    Graphs and Combinatorics, 2016, 32 : 1353 - 1374
  • [4] Difference Covering Arrays and Pseudo-Orthogonal Latin Squares
    Demirkale, Fatih
    Donovan, Diane
    Hall, Joanne
    Khodkar, Abdollah
    Rao, Asha
    GRAPHS AND COMBINATORICS, 2016, 32 (04) : 1353 - 1374
  • [7] ON ORTHOGONAL LATIN SQUARES
    WOODCOCK, CF
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (01) : 146 - 148
  • [8] ORTHOGONAL LATIN SQUARES WITH ORTHOGONAL SUBSQUARES
    DRAKE, DA
    LENZ, H
    ARCHIV DER MATHEMATIK, 1980, 34 (06) : 565 - 576
  • [9] On the orthogonal Latin squares polytope
    Appa, G
    Magos, D
    Mourtos, I
    Janssen, JCM
    DISCRETE MATHEMATICS, 2006, 306 (02) : 171 - 187
  • [10] Three Orthogonal Latin Squares
    WDWallisDepartment of Mathematics Statistics and Computer Science University of NewcastleNSW Australia
    数学进展, 1986, (03) : 269 - 281