Network quantile autoregression

被引:48
|
作者
Zhu, Xuening [1 ]
Wang, Weining [2 ,4 ]
Wang, Hansheng [3 ]
Haerdle, Wolfgang Karl [2 ,5 ]
机构
[1] Fudan Univ, Sch Data Sci, Shanghai, Peoples R China
[2] Humboldt Univ, CASE, Unter Linden 6, D-10099 Berlin, Germany
[3] Peking Univ, Guanghua Sch Management, Beijing, Peoples R China
[4] City Univ London, Dept Econ, London, England
[5] Singapore Management Univ, Sim Kee Boon Inst Financial Econ, Sch Econ, 90 Stamford Rd,6th Level, Singapore 178903, Singapore
基金
中国国家自然科学基金;
关键词
Social network; Quantile regression; Autoregrssion; Systemic risk; Financial contagion; Shared ownership; COMMUNITY DETECTION; REGRESSION; RISK; CONNECTEDNESS; INFERENCE; TOPOLOGY; MODELS;
D O I
10.1016/j.jeconom.2019.04.034
中图分类号
F [经济];
学科分类号
02 ;
摘要
The complex tail dependency structure in a dynamic network with a large-number of nodes is an important object to study. We propose a network quantile autoregression model (NQAR), which characterizes the dynamic quantile behavior. Our NQAR model consists of a system of equations, of which we relate a response to its connected nodes and node Specific characteristics in a quantile autoregression process. we show the estimation of the NQAR model and the asymptotic properties with assumptions on the network structure. For this propose we develop a network Bahadur representation that gives us direct insight into the parameter asymptotics. Moreover innovative tail-event driven impulse functions are defined. Finally, We demonstrate the usage of our model by investigating the financial contagions in the Chinese stock Market accounting for shared ownership of Companies. We find higher network dependency when the market is exposed to a higher volatility level. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:345 / 358
页数:14
相关论文
共 50 条
  • [1] Quantile autoregression
    Koenker, Roger
    Xiao, Zhijie
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (475) : 980 - 990
  • [2] QUANTILE DOUBLE AUTOREGRESSION
    Zhu, Qianqian
    Li, Guodong
    ECONOMETRIC THEORY, 2022, 38 (04) : 793 - 839
  • [3] Functional quantile autoregression
    Dong, Chaohua
    Chen, Rong
    Xiao, Zhijie
    Liu, Weiyi
    JOURNAL OF ECONOMETRICS, 2024, 244 (02)
  • [4] Bayesian joint quantile autoregression
    Jorge Castillo-Mateo
    Alan E. Gelfand
    Jesús Asín
    Ana C. Cebrián
    Jesús Abaurrea
    TEST, 2024, 33 : 335 - 357
  • [5] Quantile autoregression neural network model with applications to evaluating value at risk
    Xu, Qifa
    Liu, Xi
    Jiang, Cuixia
    Yu, Keming
    APPLIED SOFT COMPUTING, 2016, 49 : 1 - 12
  • [6] Quantile Autoregression for Censored Data
    Choi, Seokwoo Jake
    Portnoy, Stephen
    JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (05) : 603 - 623
  • [7] Bayesian joint quantile autoregression
    Castillo-Mateo, Jorge
    Gelfand, Alan E.
    Asin, Jesus
    Cebrian, Ana C.
    Abaurrea, Jesus
    TEST, 2024, 33 (01) : 335 - 357
  • [8] Markov switching quantile autoregression
    Liu, Xiaochun
    STATISTICA NEERLANDICA, 2016, 70 (04) : 356 - 395
  • [9] Network effects on risk co-movements: A network quantile autoregression-based analysis
    Chen, Yu
    Gao, Yu
    Shu, Lei
    Zhu, Xiaonan
    FINANCE RESEARCH LETTERS, 2023, 56
  • [10] The asymptotic behaviors for autoregression quantile estimates
    Li, Xin
    Mao, Mingzhi
    Huang, Gang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (15) : 5486 - 5506