Network quantile autoregression

被引:48
|
作者
Zhu, Xuening [1 ]
Wang, Weining [2 ,4 ]
Wang, Hansheng [3 ]
Haerdle, Wolfgang Karl [2 ,5 ]
机构
[1] Fudan Univ, Sch Data Sci, Shanghai, Peoples R China
[2] Humboldt Univ, CASE, Unter Linden 6, D-10099 Berlin, Germany
[3] Peking Univ, Guanghua Sch Management, Beijing, Peoples R China
[4] City Univ London, Dept Econ, London, England
[5] Singapore Management Univ, Sim Kee Boon Inst Financial Econ, Sch Econ, 90 Stamford Rd,6th Level, Singapore 178903, Singapore
基金
中国国家自然科学基金;
关键词
Social network; Quantile regression; Autoregrssion; Systemic risk; Financial contagion; Shared ownership; COMMUNITY DETECTION; REGRESSION; RISK; CONNECTEDNESS; INFERENCE; TOPOLOGY; MODELS;
D O I
10.1016/j.jeconom.2019.04.034
中图分类号
F [经济];
学科分类号
02 ;
摘要
The complex tail dependency structure in a dynamic network with a large-number of nodes is an important object to study. We propose a network quantile autoregression model (NQAR), which characterizes the dynamic quantile behavior. Our NQAR model consists of a system of equations, of which we relate a response to its connected nodes and node Specific characteristics in a quantile autoregression process. we show the estimation of the NQAR model and the asymptotic properties with assumptions on the network structure. For this propose we develop a network Bahadur representation that gives us direct insight into the parameter asymptotics. Moreover innovative tail-event driven impulse functions are defined. Finally, We demonstrate the usage of our model by investigating the financial contagions in the Chinese stock Market accounting for shared ownership of Companies. We find higher network dependency when the market is exposed to a higher volatility level. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:345 / 358
页数:14
相关论文
共 50 条
  • [41] Generalized Linear Models Network Autoregression
    Amillotta, Mirko
    Fokianos, Konstantinos
    Krikidis, Ioannis
    NETWORK SCIENCE (NETSCI-X 2022), 2022, 13197 : 112 - 125
  • [42] Effect of public stockholding on wheat price dynamics in India: A quantile autoregression approach
    Tripathi, Ashutosh K.
    Mishra, Ashok K.
    AUSTRALIAN JOURNAL OF AGRICULTURAL AND RESOURCE ECONOMICS, 2024, 68 (01) : 168 - 185
  • [43] RE-EXAMINING PURCHASING POWER PARITY IN CROATIA: QUANTILE AUTOREGRESSION APPROACH
    Bosnjak, Mile
    Bilas, Vlatka
    Novak, Ivan
    EKONOMSKI PREGLED, 2020, 71 (03): : 203 - 214
  • [44] Network vector autoregression with individual effects
    Tang, Yiming
    Bai, Yang
    Huang, Tao
    METRIKA, 2021, 84 (06) : 875 - 893
  • [45] SPATIAL QUANTILE AUTOREGRESSION FOR SEASON WITHIN YEAR DAILY MAXIMUM TEMPERATURE DATA
    Castillo-Mateo, Jorge
    Asin, Jesus
    Cebrian, Ana C.
    Gelfand, Alan E.
    Abaurrea, Jesus
    ANNALS OF APPLIED STATISTICS, 2023, 17 (03): : 2305 - 2325
  • [46] Testing the permanent income hypothesis using unit root quantile autoregression tests
    Reis Gomes, Fabio Augusto
    APPLIED ECONOMICS LETTERS, 2011, 18 (18) : 1755 - 1758
  • [48] FEATURE SCREENING FOR NETWORK AUTOREGRESSION MODEL
    Huang, Danyang
    Zhu, Xuening
    Li, Runze
    Wang, Hansheng
    STATISTICA SINICA, 2021, 31 (03) : 1239 - 1259
  • [49] (Under)Mining local residential property values: A semiparametric spatial quantile autoregression
    Malikov, Emir
    Sun, Yiguo
    Hite, Diane
    JOURNAL OF APPLIED ECONOMETRICS, 2019, 34 (01) : 82 - 109
  • [50] Asymmetric price transmission in the US and German fuel markets: a quantile autoregression approach
    Karsten Schweikert
    Empirical Economics, 2019, 56 : 1071 - 1095