Bayesian joint quantile autoregression

被引:0
|
作者
Jorge Castillo-Mateo
Alan E. Gelfand
Jesús Asín
Ana C. Cebrián
Jesús Abaurrea
机构
[1] University of Zaragoza,Department of Statistical Methods
[2] Duke University,Department of Statistical Science
来源
TEST | 2024年 / 33卷
关键词
Copula model; Gaussian process; Joint quantile model; Markov chain Monte Carlo; Spatial quantile autoregression; 62F15; 62G08; 62H05; 62M10; 62M30;
D O I
暂无
中图分类号
学科分类号
摘要
Quantile regression continues to increase in usage, providing a useful alternative to customary mean regression. Primary implementation takes the form of so-called multiple quantile regression, creating a separate regression for each quantile of interest. However, recently, advances have been made in joint quantile regression, supplying a quantile function which avoids crossing of the regression across quantiles. Here, we turn to quantile autoregression (QAR), offering a fully Bayesian version. We extend the initial quantile regression work of Koenker and Xiao (J Am Stat Assoc 101(475):980–990, 2006. https://doi.org/10.1198/016214506000000672) in the spirit of Tokdar and Kadane (Bayesian Anal 7(1):51–72, 2012. https://doi.org/10.1214/12-BA702). We offer a directly interpretable parametric model specification for QAR. Further, we offer a pth-order QAR(p) version, a multivariate QAR(1) version, and a spatial QAR(1) version. We illustrate with simulation as well as a temperature dataset collected in Aragón, Spain.
引用
收藏
页码:335 / 357
页数:22
相关论文
共 50 条
  • [1] Bayesian joint quantile autoregression
    Castillo-Mateo, Jorge
    Gelfand, Alan E.
    Asin, Jesus
    Cebrian, Ana C.
    Abaurrea, Jesus
    TEST, 2024, 33 (01) : 335 - 357
  • [2] Quantile autoregression
    Koenker, Roger
    Xiao, Zhijie
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (475) : 980 - 990
  • [3] QUANTILE DOUBLE AUTOREGRESSION
    Zhu, Qianqian
    Li, Guodong
    ECONOMETRIC THEORY, 2022, 38 (04) : 793 - 839
  • [4] Network quantile autoregression
    Zhu, Xuening
    Wang, Weining
    Wang, Hansheng
    Haerdle, Wolfgang Karl
    JOURNAL OF ECONOMETRICS, 2019, 212 (01) : 345 - 358
  • [5] Functional quantile autoregression
    Dong, Chaohua
    Chen, Rong
    Xiao, Zhijie
    Liu, Weiyi
    JOURNAL OF ECONOMETRICS, 2024, 244 (02)
  • [6] Bayesian joint-quantile regression
    Hu, Yingying
    Wang, Huixia Judy
    He, Xuming
    Guo, Jianhua
    COMPUTATIONAL STATISTICS, 2021, 36 (03) : 2033 - 2053
  • [7] Bayesian joint-quantile regression
    Yingying Hu
    Huixia Judy Wang
    Xuming He
    Jianhua Guo
    Computational Statistics, 2021, 36 : 2033 - 2053
  • [8] Quantile Autoregression for Censored Data
    Choi, Seokwoo Jake
    Portnoy, Stephen
    JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (05) : 603 - 623
  • [9] Markov switching quantile autoregression
    Liu, Xiaochun
    STATISTICA NEERLANDICA, 2016, 70 (04) : 356 - 395
  • [10] The asymptotic behaviors for autoregression quantile estimates
    Li, Xin
    Mao, Mingzhi
    Huang, Gang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (15) : 5486 - 5506