Factors of binomial sums from the Catalan triangle

被引:24
|
作者
Guo, Victor J. W. [1 ]
Zeng, Jiang [2 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] Univ Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, F-69622 Villeurbanne, France
基金
中国国家自然科学基金;
关键词
Catalan triangle; Divisibility; Chu-Vandermonde formula; Pfaff-Saalschutz identity; Lucas' theorem; COEFFICIENTS; MOMENTS; NUMBERS;
D O I
10.1016/j.jnt.2009.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the Newton interpolation formula. we generalize the recent identities on the Catalan triangle obtained by Miana and Romero as well as those of Chen and Chu. We further study divisibility properties Of SUMS of products of binomial coefficients and an odd power of a natural number. For example, we prove that for all positive integers n(1) ..... n(m), n(m+1) = n(1), and any nonnegative integer r, the expression n(1)(-1)(n(1) + n(m) n(1))(-1) (n1)Sigma(k=1) k2r+1 (m)Pi(i=1)(n(i) + n(i+1) n(i) + k) is either an integer or a half-integer. Mcneover, several related conjectures are proposed. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:172 / 186
页数:15
相关论文
共 50 条