Factors of binomial sums from the Catalan triangle

被引:24
|
作者
Guo, Victor J. W. [1 ]
Zeng, Jiang [2 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] Univ Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, F-69622 Villeurbanne, France
基金
中国国家自然科学基金;
关键词
Catalan triangle; Divisibility; Chu-Vandermonde formula; Pfaff-Saalschutz identity; Lucas' theorem; COEFFICIENTS; MOMENTS; NUMBERS;
D O I
10.1016/j.jnt.2009.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the Newton interpolation formula. we generalize the recent identities on the Catalan triangle obtained by Miana and Romero as well as those of Chen and Chu. We further study divisibility properties Of SUMS of products of binomial coefficients and an odd power of a natural number. For example, we prove that for all positive integers n(1) ..... n(m), n(m+1) = n(1), and any nonnegative integer r, the expression n(1)(-1)(n(1) + n(m) n(1))(-1) (n1)Sigma(k=1) k2r+1 (m)Pi(i=1)(n(i) + n(i+1) n(i) + k) is either an integer or a half-integer. Mcneover, several related conjectures are proposed. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:172 / 186
页数:15
相关论文
共 50 条
  • [21] Binomial Fibonacci Sums from Chebyshev Polynomials
    Adegoke, Kunle
    Frontczak, Robert
    Goy, Taras
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (09)
  • [22] Reciprocal Catalan Sums
    Abel, Ulrich
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (04): : 405 - 406
  • [23] Multiple binomial sums
    Bostan, Alin
    Lairez, Pierre
    Salvy, Bruno
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 80 : 351 - 386
  • [24] SOME BINOMIAL SUMS
    CARLITZ, L
    FIBONACCI QUARTERLY, 1976, 14 (03): : 249 - 253
  • [25] Binomial exponential sums
    Shparlinski, Igor E.
    Voloch, Jose Felipe
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 21 : 931 - 941
  • [26] Binomial tribonacci sums
    Adegoke, Kunle
    Frontczak, Robert
    Goy, Taras
    DISCRETE MATHEMATICS LETTERS, 2022, 8 : 30 - 37
  • [27] NOTE ABOUT THE CATALAN TRIANGLE
    EPLETT, WJR
    DISCRETE MATHEMATICS, 1979, 25 (03) : 289 - 291
  • [28] On a Surface Associated to the Catalan Triangle
    Jianu, Marilena
    Achimescu, Sever
    Daus, Leonard
    Mierlus-Mazilu, Ion
    Mihai, Adela
    Tudor, Daniel
    AXIOMS, 2022, 11 (12)
  • [29] Several identities in the Catalan triangle
    Zhizheng Zhang
    Bijun Pang
    Indian Journal of Pure and Applied Mathematics, 2010, 41 : 363 - 378
  • [30] New identities in the Catalan triangle
    Gutierrez, J. M.
    Hernandez, M. A.
    Miana, P. J.
    Romero, N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 52 - 61