Factors of binomial sums from the Catalan triangle

被引:24
|
作者
Guo, Victor J. W. [1 ]
Zeng, Jiang [2 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] Univ Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, F-69622 Villeurbanne, France
基金
中国国家自然科学基金;
关键词
Catalan triangle; Divisibility; Chu-Vandermonde formula; Pfaff-Saalschutz identity; Lucas' theorem; COEFFICIENTS; MOMENTS; NUMBERS;
D O I
10.1016/j.jnt.2009.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the Newton interpolation formula. we generalize the recent identities on the Catalan triangle obtained by Miana and Romero as well as those of Chen and Chu. We further study divisibility properties Of SUMS of products of binomial coefficients and an odd power of a natural number. For example, we prove that for all positive integers n(1) ..... n(m), n(m+1) = n(1), and any nonnegative integer r, the expression n(1)(-1)(n(1) + n(m) n(1))(-1) (n1)Sigma(k=1) k2r+1 (m)Pi(i=1)(n(i) + n(i+1) n(i) + k) is either an integer or a half-integer. Mcneover, several related conjectures are proposed. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:172 / 186
页数:15
相关论文
共 50 条
  • [1] Some new binomial sums related to the Catalan triangle
    Sun, Yidong
    Ma, Fei
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [2] Catalan triangle numbers and binomial coefficients
    Lee, Kyu-Hwan
    Oh, Se-jin
    REPRESENTATIONS OF LIE ALGEBRAS, QUANTUM GROUPS AND RELATED TOPICS, 2018, 713 : 165 - 185
  • [3] BINOMIAL SUMS INVOLVING CATALAN NUMBERS
    Chu, Wenchang
    Kilic, Emrah
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (04) : 1221 - 1225
  • [4] Sums of powers of Catalan triangle numbers
    Miana, Pedro J.
    Ohtsuka, Hideyuki
    Romero, Natalia
    DISCRETE MATHEMATICS, 2017, 340 (10) : 2388 - 2397
  • [5] TRIPLE PRODUCT SUMS OF CATALAN TRIANGLE NUMBERS
    Chu, Wenchang
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2020, 15 (02) : 1 - 17
  • [6] Exponential sums with Catalan numbers and middle binomial coefficients
    Garaev, Moubariz Z.
    Luca, Florian
    Shparlinski, Igor E.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (01): : 23 - 37
  • [7] Factors of alternating binomial sums
    Cao, Hui-Qin
    Pan, Hao
    ADVANCES IN APPLIED MATHEMATICS, 2010, 45 (01) : 96 - 107
  • [8] Supercongruences concerning lacunary sums of Catalan numbers and binomial coefficients
    Zhang, Yong
    Pan, Hao
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 103 (1-2): : 41 - 78
  • [9] On sums of binomial coefficients involving Catalan and Delannoy numbers modulo
    Mao, Guo-Shuai
    RAMANUJAN JOURNAL, 2018, 45 (02): : 319 - 330
  • [10] POLYNOMIAL FORMS FOR ALTERNATING SUMS OF PRODUCTS OF BINOMIAL-CATALAN NUMBERS
    Gauthier, N.
    FIBONACCI QUARTERLY, 2012, 50 (01): : 62 - 67