Alternating minimization algorithms for convex minimization problem with application to image deblurring and denoising

被引:1
|
作者
Padcharoen, Anantachai [1 ]
Kumam, Poom [2 ]
Chaipunya, Parin [1 ]
Kumam, Wiyada [3 ]
Siricharoen, Punnarai [4 ]
Thounthong, Phatiphat [5 ]
机构
[1] KMUTT, Fac Sci, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] KMUTT, Fac Sci, Theoret & Computat Sci Ctr TaCS, Fixed Point Theory & Applicat Res Grp, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] Rajamangala Univ Technol Thanyaburi RMUTT, Fac Sci & Technol, Dept Math & Comp Sci, Program Appl Stat, Thanyaburi 12110, Pathumthani, Thailand
[4] KMUTT, Fac Sci, Theoret & Computat Sci Ctr TaCS, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[5] King Mongkuts Univ Technol, Fac Tech Educ, Dept Teacher Training Elect Engn, Renewable Energy Res Ctr, Bangkok 10800, Thailand
关键词
Alternating minimization algorithms; convex minimization problem; image deblurring; RECOVERY;
D O I
10.1109/ICCAIRO.2018.00043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose algorithm to restore blurred and noisy images based on the discretized total variation minimization technique. The proposed method is based on an alternating technique for image deblurring and denoising. Start by finding an approximate image using a Tikhonov regularization method. This corresponds to a deblurring process with possible artifacts and noise remaining. In the denoising step, we use fast iterative shrinkage-thresholding algorithm (SFISTA) or fast gradient-based algorithm (FGP). Besides, we prove the convergence of the proposed algorithm. Numerical results demonstrate the efficiency and viability of the proposed algorithm to restore the degraded images.
引用
收藏
页码:216 / 222
页数:7
相关论文
共 50 条
  • [31] An alternating iterative algorithm for image deblurring and denoising problems
    Wang, Si
    Huang, Ting-Zhu
    Liu, Jun
    Lv, Xiao-Guang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (03) : 617 - 626
  • [32] Extragradient method for convex minimization problem
    Ceng, Lu-Chuan
    Liou, Yeong-Cheng
    Wen, Ching-Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [33] Extragradient method for convex minimization problem
    Lu-Chuan Ceng
    Yeong-Cheng Liou
    Ching-Feng Wen
    Journal of Inequalities and Applications, 2014
  • [34] Iterative Constrained Minimization for Vectorial TV Image Deblurring
    Chen, K.
    Piccolomini, E. Loli
    Zama, F.
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2016, 54 (02) : 240 - 255
  • [35] Alternating minimization multigrid algorithms for transmission tomography
    O'Sullivan, JA
    Benac, J
    COMPUTATIONAL IMAGING II, 2004, 5299 : 216 - 221
  • [36] Iterative Constrained Minimization for Vectorial TV Image Deblurring
    K. Chen
    E. Loli Piccolomini
    F. Zama
    Journal of Mathematical Imaging and Vision, 2016, 54 : 240 - 255
  • [37] LOW PATCH-RANK IMAGE DECOMPOSITION USING ALTERNATING MINIMIZATION ALGORITHMS
    Zhao, Lulu
    Chen, Cheng
    Lu, Tingxia
    Zhang, Zhiyuan
    He, Hongjin
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (03): : 403 - 420
  • [38] A modified alternating direction method for convex minimization problems
    He, BS
    Zhou, J
    APPLIED MATHEMATICS LETTERS, 2000, 13 (02) : 123 - 130
  • [39] Space Telescope Image reconstruction based on Combined Convex Relaxation and Non Convex Minimization Algorithms
    Althaf, A. P.
    Byjubai, T. P.
    2018 IEEE RECENT ADVANCES IN INTELLIGENT COMPUTATIONAL SYSTEMS (RAICS), 2018, : 60 - 64
  • [40] Efficient algorithms for discrepancy minimization in convex sets
    Eldan, Ronen
    Singh, Mohit
    RANDOM STRUCTURES & ALGORITHMS, 2018, 53 (02) : 289 - 307