Alternating minimization algorithms for convex minimization problem with application to image deblurring and denoising

被引:1
|
作者
Padcharoen, Anantachai [1 ]
Kumam, Poom [2 ]
Chaipunya, Parin [1 ]
Kumam, Wiyada [3 ]
Siricharoen, Punnarai [4 ]
Thounthong, Phatiphat [5 ]
机构
[1] KMUTT, Fac Sci, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] KMUTT, Fac Sci, Theoret & Computat Sci Ctr TaCS, Fixed Point Theory & Applicat Res Grp, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] Rajamangala Univ Technol Thanyaburi RMUTT, Fac Sci & Technol, Dept Math & Comp Sci, Program Appl Stat, Thanyaburi 12110, Pathumthani, Thailand
[4] KMUTT, Fac Sci, Theoret & Computat Sci Ctr TaCS, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[5] King Mongkuts Univ Technol, Fac Tech Educ, Dept Teacher Training Elect Engn, Renewable Energy Res Ctr, Bangkok 10800, Thailand
关键词
Alternating minimization algorithms; convex minimization problem; image deblurring; RECOVERY;
D O I
10.1109/ICCAIRO.2018.00043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose algorithm to restore blurred and noisy images based on the discretized total variation minimization technique. The proposed method is based on an alternating technique for image deblurring and denoising. Start by finding an approximate image using a Tikhonov regularization method. This corresponds to a deblurring process with possible artifacts and noise remaining. In the denoising step, we use fast iterative shrinkage-thresholding algorithm (SFISTA) or fast gradient-based algorithm (FGP). Besides, we prove the convergence of the proposed algorithm. Numerical results demonstrate the efficiency and viability of the proposed algorithm to restore the degraded images.
引用
收藏
页码:216 / 222
页数:7
相关论文
共 50 条
  • [21] Alternating Proximal Gradient Method for Convex Minimization
    Ma, Shiqian
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (02) : 546 - 572
  • [22] Alternating minimization methods for strongly convex optimization
    Tupitsa, Nazarii
    Dvurechensky, Pavel
    Gasnikov, Alexander
    Guminov, Sergey
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (05): : 721 - 739
  • [23] Random algorithms for convex minimization problems
    Angelia Nedić
    Mathematical Programming, 2011, 129 : 225 - 253
  • [24] Random algorithms for convex minimization problems
    Nedic, Angelia
    MATHEMATICAL PROGRAMMING, 2011, 129 (02) : 225 - 253
  • [25] CONVERGENCE OF SOME ALGORITHMS FOR CONVEX MINIMIZATION
    CORREA, R
    LEMARECHAL, C
    MATHEMATICAL PROGRAMMING, 1993, 62 (02) : 261 - 275
  • [26] Image denoising by a direct variational minimization
    Janev, Marko
    Atanackovic, Teodor
    Pilipovic, Stevan
    Obradovic, Radovan
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011, : 1 - 16
  • [27] Image denoising by a direct variational minimization
    Marko Janev
    Teodor Atanacković
    Stevan Pilipović
    Radovan Obradović
    EURASIP Journal on Advances in Signal Processing, 2011
  • [28] Quantum algorithms and the minimization problem
    Hollenberg, LCL
    EXPERIMENTAL IMPLEMENTATION OF QUANTUM COMPUTATION, 2001, : 310 - 313
  • [29] Quantum algorithms and the minimization problem
    Hollenberg, LCL
    EXPERIMENTAL IMPLEMENTATION OF QUANTUM COMPUTATION, 2001, : 265 - 268
  • [30] A Fast Alternating Minimization Algorithm for Nonlocal Vectorial Total Variational Multichannel Image Denoising
    Xi, Rubing
    Wang, Zhengming
    Zhao, Xia
    Xie, Meihua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014