Advance Warning Methodologies for COVID-19 Using Chest X-Ray Images

被引:26
|
作者
Ahishali, Mete [1 ]
Degerli, Aysen [1 ]
Yamac, Mehmet [1 ]
Kiranyaz, Serkan [2 ]
Chowdhury, Muhammad E. H. [2 ]
Hameed, Khalid [3 ]
Hamid, Tahir [4 ,5 ]
Mazhar, Rashid [4 ]
Gabbouj, Moncef [1 ]
机构
[1] Tampere Univ, Fac Informat Technol & Commun Sci, Tampere 33720, Finland
[2] Qatar Univ, Dept Elect Engn, Doha 2713, Qatar
[3] Reem Med Ctr, Doha 46031, Qatar
[4] Hamad Med Corp Hosp, Doha 57621, Qatar
[5] Weill Cornell Med Qatar, Doha 24144, Qatar
基金
芬兰科学院;
关键词
COVID-19; X-ray imaging; Lung; Task analysis; Sensitivity; Computed tomography; Medical diagnostic imaging; COVID-19 detection in early stages; deep learning; machine learning; representation based classification; SUPPORT RECOVERY; CT; REPRESENTATION; CLASSIFICATION;
D O I
10.1109/ACCESS.2021.3064927
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Coronavirus disease 2019 (COVID-19) has rapidly become a global health concern after its first known detection in December 2019. As a result, accurate and reliable advance warning system for the early diagnosis of COVID-19 has now become a priority. The detection of COVID-19 in early stages is not a straightforward task from chest X-ray images according to expert medical doctors because the traces of the infection are visible only when the disease has progressed to a moderate or severe stage. In this study, our first aim is to evaluate the ability of recent state-of-the-art Machine Learning techniques for the early detection of COVID-19 from chest X-ray images. Both compact classifiers and deep learning approaches are considered in this study. Furthermore, we propose a recent compact classifier, Convolutional Support Estimator Network (CSEN) approach for this purpose since it is well-suited for a scarce-data classification task. Finally, this study introduces a new benchmark dataset called Early-QaTa-COV19, which consists of 1065 early-stage COVID-19 pneumonia samples (very limited or no infection signs) labeled by the medical doctors and 12544 samples for control (normal) class. A detailed set of experiments shows that the CSEN achieves the top (over 97%) sensitivity with over 95.5% specificity. Moreover, DenseNet-121 network produces the leading performance among other deep networks with 95% sensitivity and 99.74% specificity.
引用
收藏
页码:41052 / 41065
页数:14
相关论文
共 50 条
  • [41] Diagnosis of COVID-19 using chest X-ray images based on modified DarkCovidNet model
    Redie, Dawit Kiros
    Sirko, Abdulhakim Edao
    Demissie, Tensaie Melkamu
    Teferi, Semagn Sisay
    Shrivastava, Vimal Kumar
    Verma, Om Prakash
    Sharma, Tarun Kumar
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (03) : 729 - 738
  • [42] FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images
    Tarun Agrawal
    Prakash Choudhary
    Evolving Systems, 2022, 13 : 519 - 533
  • [43] COVID-19 Lungs Assessment in Chest X-ray Images using Convolutional Neural Networks
    Milczarski, Piotr
    Beczkowski, Michal
    Borowski, Norbert
    PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 2, 2021, : 1062 - 1067
  • [44] COVID-19 Diagnosis Using Chest X-ray Images via Classification and Object Detection
    Yoshitsugu, Kenji
    Nakamoto, Yukikazu
    AICCC 2021: 2021 4TH ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE, 2021, : 62 - 67
  • [45] COVID-19 Detection in Chest X-ray Images Using a New Channel Boosted CNN
    Khan, Saddam Hussain
    Sohail, Anabia
    Khan, Asifullah
    Lee, Yeon-Soo
    DIAGNOSTICS, 2022, 12 (02)
  • [46] COVID-19 Diagnosis Using CNN-Based Classification of Chest X-Ray Images
    Ferariu, Lavinia
    Hardulea, Catalin-Marian
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [47] Explainable COVID-19 Three Classes Severity Classification Using Chest X-Ray Images
    Thon, P. L.
    Than, J. C. M.
    Kassim, R. M.
    Yunus, A.
    Noor, N. M.
    Then, P.
    2022 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES, IECBES, 2022, : 312 - 317
  • [48] COVID-19 detection in chest X-ray images using deep boosted hybrid learning
    Khan, Saddam Hussain
    Sohail, Anabia
    Khan, Asifullah
    Hassan, Mehdi
    Lee, Yeon Soo
    Alam, Jamshed
    Basit, Abdul
    Zubair, Saima
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [49] A Novel Method for COVID-19 Diagnosis Using Artificial Intelligence in Chest X-ray Images
    Almalki, Yassir Edrees
    Qayyum, Abdul
    Irfan, Muhammad
    Haider, Noman
    Glowacz, Adam
    Alshehri, Fahad Mohammed
    Alduraibi, Sharifa K.
    Alshamrani, Khalaf
    Basha, Mohammad Abd Alkhalik
    Alduraibi, Alaa
    Saeed, M. K.
    Rahman, Saifur
    HEALTHCARE, 2021, 9 (05)
  • [50] Multiscale Attention Guided Network for COVID-19 Diagnosis Using Chest X-Ray Images
    Li, Jingxiong
    Wang, Yaqi
    Wang, Shuai
    Wang, Jun
    Liu, Jun
    Jin, Qun
    Sun, Lingling
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (05) : 1336 - 1346