Advance Warning Methodologies for COVID-19 Using Chest X-Ray Images

被引:26
|
作者
Ahishali, Mete [1 ]
Degerli, Aysen [1 ]
Yamac, Mehmet [1 ]
Kiranyaz, Serkan [2 ]
Chowdhury, Muhammad E. H. [2 ]
Hameed, Khalid [3 ]
Hamid, Tahir [4 ,5 ]
Mazhar, Rashid [4 ]
Gabbouj, Moncef [1 ]
机构
[1] Tampere Univ, Fac Informat Technol & Commun Sci, Tampere 33720, Finland
[2] Qatar Univ, Dept Elect Engn, Doha 2713, Qatar
[3] Reem Med Ctr, Doha 46031, Qatar
[4] Hamad Med Corp Hosp, Doha 57621, Qatar
[5] Weill Cornell Med Qatar, Doha 24144, Qatar
基金
芬兰科学院;
关键词
COVID-19; X-ray imaging; Lung; Task analysis; Sensitivity; Computed tomography; Medical diagnostic imaging; COVID-19 detection in early stages; deep learning; machine learning; representation based classification; SUPPORT RECOVERY; CT; REPRESENTATION; CLASSIFICATION;
D O I
10.1109/ACCESS.2021.3064927
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Coronavirus disease 2019 (COVID-19) has rapidly become a global health concern after its first known detection in December 2019. As a result, accurate and reliable advance warning system for the early diagnosis of COVID-19 has now become a priority. The detection of COVID-19 in early stages is not a straightforward task from chest X-ray images according to expert medical doctors because the traces of the infection are visible only when the disease has progressed to a moderate or severe stage. In this study, our first aim is to evaluate the ability of recent state-of-the-art Machine Learning techniques for the early detection of COVID-19 from chest X-ray images. Both compact classifiers and deep learning approaches are considered in this study. Furthermore, we propose a recent compact classifier, Convolutional Support Estimator Network (CSEN) approach for this purpose since it is well-suited for a scarce-data classification task. Finally, this study introduces a new benchmark dataset called Early-QaTa-COV19, which consists of 1065 early-stage COVID-19 pneumonia samples (very limited or no infection signs) labeled by the medical doctors and 12544 samples for control (normal) class. A detailed set of experiments shows that the CSEN achieves the top (over 97%) sensitivity with over 95.5% specificity. Moreover, DenseNet-121 network produces the leading performance among other deep networks with 95% sensitivity and 99.74% specificity.
引用
收藏
页码:41052 / 41065
页数:14
相关论文
共 50 条
  • [31] Optimal Ensemble learning model for COVID-19 detection using chest X-ray images
    Balasubramaniam, S.
    Kumar, K. Satheesh
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 81
  • [32] Prediction of Covid-19 Based on Chest X-Ray Images Using Deep Learning with CNN
    Meem, Anika Tahsin
    Khan, Mohammad Monirujjaman
    Masud, Mehedi
    Aljahdali, Sultan
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 41 (03): : 1223 - 1240
  • [33] Variational Autoencoder Based Imbalanced COVID-19 Detection Using Chest X-Ray Images
    Sankhadeep Chatterjee
    Soumyajit Maity
    Mayukh Bhattacharjee
    Soumen Banerjee
    Asit Kumar Das
    Weiping Ding
    New Generation Computing, 2023, 41 : 25 - 60
  • [34] FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images
    Agrawal, Tarun
    Choudhary, Prakash
    EVOLVING SYSTEMS, 2022, 13 (04) : 519 - 533
  • [35] An Efficient Deep Learning Model to Detect COVID-19 Using Chest X-ray Images
    Chakraborty, Somenath
    Murali, Beddhu
    Mitra, Amal K.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (04)
  • [36] Covid-19 Detection Based on Chest X-Ray Images Using DCT Compression and NN
    Taher, Fatma
    Haweel, Reem T.
    Al Bastaki, Usama Mohammad Hassan
    Abdelwahed, Eman
    Rehman, Tariq
    Haweel, Tarek I.
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST 2022), 2022,
  • [37] Detection of COVID-19 from Chest X-Ray Images Using Convolutional Neural Networks
    Sekeroglu, Boran
    Ozsahin, Ilker
    SLAS TECHNOLOGY, 2020, 25 (06): : 553 - 565
  • [38] OSEGNET: OPERATIONAL SEGMENTATION NETWORK FOR COVID-19 DETECTION USING CHEST X-RAY IMAGES
    Degerli, Aysen
    Kiranyaz, Serkan
    Chowdhury, Muhammad E. H.
    Gabbouj, Moncef
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2306 - 2310
  • [39] Optimal Synergic Deep Learning for COVID-19 Classification Using Chest X-Ray Images
    Escorcia-Gutierrez, Jose
    Gamarra, Margarita
    Soto-Diaz, Roosvel
    Alsafari, Safa
    Yafoz, Ayman
    Mansour, Romany F.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5255 - 5270
  • [40] Automated Identification of COVID-19 from Chest X-Ray Images Using Machine Learning
    Biswas, Debanshu
    Sahoo, Abhaya Kumar
    IETE JOURNAL OF RESEARCH, 2024, 70 (04) : 3603 - 3613