Reachability Analysis of Deep ReLU Neural Networks using Facet-Vertex Incidence

被引:9
|
作者
Yang, Xiaodong [1 ]
Johnson, Taylor T. [1 ]
Hoang-Dung Tran [2 ]
Yamaguchi, Tomoya [3 ]
Hoxha, Bardh [3 ]
Prokhorov, Danil [3 ]
机构
[1] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA
[2] Univ Nebraska, Lincoln, NE USA
[3] Toyota Res Inst, Ann Arbor, MI USA
关键词
D O I
10.1145/3447928.3456650
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep Neural Networks (DNNs) are powerful machine learning models for approximating complex functions. In this work, we provide an exact reachability analysis method for DNNs with Rectified Linear Unit (ReLU) activation functions. At its core, our set-based method utilizes a facet-vertex incidence matrix, which represents a complete encoding of the combinatorial structure of convex sets. When a safety violation is detected, our approach provides backtracking which determines the complete input set that caused the safety violation. The performance of our method is evaluated and compared to other state-of-the-art methods by using the ACAS Xu flight controller and other benchmarks.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] New Error Bounds for Deep ReLU Networks Using Sparse Grids
    Montanelli, Hadrien
    Du, Qiang
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2019, 1 (01): : 78 - 92
  • [42] Factor Augmented Sparse Throughput Deep ReLU Neural Networks for High Dimensional Regression
    Fan, Jianqing
    Gu, Yihong
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 2680 - 2694
  • [43] Collocation approximation by deep neural ReLU networks for parametric and stochastic PDEs with lognormal inputs
    Dinh Dung
    SBORNIK MATHEMATICS, 2023, 214 (04) : 479 - 515
  • [44] Simulation Fidelity Analysis using Deep Neural Networks
    Dabbiru, Lalitha
    Goodin, Chris
    Carruth, Daniel W.
    Aspin, Zachary
    Carrillo, Justin
    Kaniarz, John
    SYNTHETIC DATA FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING: TOOLS, TECHNIQUES, AND APPLICATIONS II, 2024, 13035
  • [45] Semantic analysis on faces using deep neural networks
    Federico Pellejero, Nicolas
    Grinblat, Guillermo
    Uzal, Lucas
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2018, 21 (61): : 14 - 29
  • [46] Functional data analysis using deep neural networks
    Wang, Shuoyang
    Zhang, Wanyu
    Cao, Guanqun
    Huang, Yuan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (04):
  • [47] Image Texture Analysis Using Deep Neural Networks
    Gunasekara, P. G. H. H.
    Wijayakulasooriya, J. V.
    Dharmagunawardhana, H. A. C.
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2017, : 170 - 174
  • [48] Multimodal Sentiment Analysis Using Deep Neural Networks
    Abburi, Harika
    Prasath, Rajendra
    Shrivastava, Manish
    Gangashetty, Suryakanth V.
    MINING INTELLIGENCE AND KNOWLEDGE EXPLORATION (MIKE 2016), 2017, 10089 : 58 - 65
  • [49] Robustness Verification of Deep Neural Networks Using Star-Based Reachability Analysis with Variable-Length Time Series Input
    Pal, Neelanjana
    Lopez, Diego Manzanas
    Johnson, Taylor T.
    FORMAL METHODS FOR INDUSTRIAL CRITICAL SYSTEMS, FMICS 2023, 2023, 14290 : 170 - 188
  • [50] Convergence analysis for gradient flows in the training of artificial neural networks with ReLU activation
    Jentzen, Arnulf
    Riekert, Adrian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 517 (02)