Reachability Analysis of Deep ReLU Neural Networks using Facet-Vertex Incidence

被引:9
|
作者
Yang, Xiaodong [1 ]
Johnson, Taylor T. [1 ]
Hoang-Dung Tran [2 ]
Yamaguchi, Tomoya [3 ]
Hoxha, Bardh [3 ]
Prokhorov, Danil [3 ]
机构
[1] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA
[2] Univ Nebraska, Lincoln, NE USA
[3] Toyota Res Inst, Ann Arbor, MI USA
关键词
D O I
10.1145/3447928.3456650
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep Neural Networks (DNNs) are powerful machine learning models for approximating complex functions. In this work, we provide an exact reachability analysis method for DNNs with Rectified Linear Unit (ReLU) activation functions. At its core, our set-based method utilizes a facet-vertex incidence matrix, which represents a complete encoding of the combinatorial structure of convex sets. When a safety violation is detected, our approach provides backtracking which determines the complete input set that caused the safety violation. The performance of our method is evaluated and compared to other state-of-the-art methods by using the ACAS Xu flight controller and other benchmarks.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Reachability Analysis of Neural Networks Using Mixed Monotonicity
    Meyer, Pierre-Jean
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 3068 - 3073
  • [12] Local Identifiability of Deep ReLU Neural Networks: the Theory
    Bona-Pellissier, Joachim
    Malgouyres, Francois
    Bachoc, Francois
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [13] RELU DEEP NEURAL NETWORKS AND LINEAR FINITE ELEMENTS
    He, Juncai
    Li, Lin
    Xu, Jinchao
    Zheng, Chunyue
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2020, 38 (03) : 502 - 527
  • [14] Robust nonparametric regression based on deep ReLU neural networks
    Chen, Juntong
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 233
  • [15] On Centralization and Unitization of Batch Normalization for Deep ReLU Neural Networks
    Fei, Wen
    Dai, Wenrui
    Li, Chenglin
    Zou, Junni
    Xiong, Hongkai
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 2827 - 2841
  • [16] Deep ReLU neural networks in high-dimensional approximation
    Dung, Dinh
    Nguyen, Van Kien
    NEURAL NETWORKS, 2021, 142 : 619 - 635
  • [17] ReLU deep neural networks from the hierarchical basis perspective
    He, Juncai
    Li, Lin
    Xu, Jinchao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 120 : 105 - 114
  • [18] Reachability analysis of recurrent neural networks
    Choi, Sung Woo
    Li, Yuntao
    Yang, Xiaodong
    Yamaguchi, Tomoya
    Hoxha, Bardh
    Fainekos, Georgios
    Prokhorov, Danil
    Tran, Hoang-Dung
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2025, 56
  • [19] Approximation of Nonlinear Functionals Using Deep ReLU Networks
    Song, Linhao
    Fan, Jun
    Chen, Di-Rong
    Zhou, Ding-Xuan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (04)
  • [20] Approximation of Nonlinear Functionals Using Deep ReLU Networks
    Linhao Song
    Jun Fan
    Di-Rong Chen
    Ding-Xuan Zhou
    Journal of Fourier Analysis and Applications, 2023, 29