REVERSE OF THE GRAND FURUTA INEQUALITY AND ITS APPLICATIONS

被引:2
|
作者
Fujii, Masatoshi [1 ]
Nakamoto, Ritsuo [1 ]
Tominaga, Masaru [2 ]
机构
[1] Ibaraki Univ, Fac Engn, Hitachi, Ibaraki 3160033, Japan
[2] Toyama Natl Coll Technol, Toyama 9398630, Japan
来源
BANACH JOURNAL OF MATHEMATICAL ANALYSIS | 2008年 / 2卷 / 02期
关键词
grand Furuta inequality; Furuta inequality; Lowner-Heinz inequality; Araki-Cordes inequality; Bebiano-Lemos-Providencia inequality; norm inequality; positive operator; operator inequality; reverse inequality;
D O I
10.15352/bjma/1240336289
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall give a norm inequality equivalent to the grand Furuta inequality, and moreover show its reverse as follows: Let A and B be positive operators such that 0 < m <= B <= M for some scalars 0 < m < M and h :(-) M/m > 1. Then parallel to A(1/2) {A(-t/2) (A(r/2) B((r-t){(p-t) s+r}/1-t+r) A(r/2))(1/s) A(-t/2)}(1/p) A(1/2)parallel to <= K(h(r-t), (p-t)s+r/1-t+r)(1/ps) parallel to A(1-t+r/2) Br-t A(1-t+r/2) parallel to((p-t)s+r/ps(1-t+r)) for 0 <= t <= 1, p >= 1, s >= 1 and r >= t >= 0, where K(h,p) is the generalized Kantorovich constant. As applications, we consider reverses related to the Ando-Hiai inequality.
引用
收藏
页码:23 / 30
页数:8
相关论文
共 50 条
  • [41] AN ORDER PRESERVING INEQUALITY FOR THREE OPERATORS VIA FURUTA INEQUALITY
    杨长森
    Acta Mathematica Scientia, 2008, (04) : 998 - 1002
  • [42] Operator functions implying generalized Furuta inequality
    Furuta, T
    Yamazaki, T
    Yanagida, M
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1998, 1 (01): : 123 - 130
  • [43] FURUTA INEQUALITY AND q-HYPONORMAL OPERATORS
    Yuan, Jiangtao
    OPERATORS AND MATRICES, 2010, 4 (03): : 405 - 415
  • [44] ON AN INEQUALITY AND ITS APPLICATIONS
    HU, K
    SCIENTIA SINICA, 1981, 24 (08): : 1047 - 1055
  • [45] ON THE OPERATOR ACZEL INEQUALITY AND ITS REVERSE
    Furuichi, Shigeru
    Jabbarzadeh, Mohammad Reza
    Kaleibary, Venus
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (01): : 249 - 259
  • [46] ON AN INEQUALITY AND ITS APPLICATIONS
    胡克
    Science China Mathematics, 1981, (08) : 1047 - 1055
  • [47] Extensions of Heinz-Kato-Furuta inequality
    Fujii, M
    Nakamoto, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (01) : 223 - 228
  • [48] An Application of Furuta Inequality to Linear Operator Equations
    Ahn, Eunkyung
    Lim, Yongdo
    KYUNGPOOK MATHEMATICAL JOURNAL, 2009, 49 (04): : 743 - 750
  • [49] FURTHER DEVELOPMENTS OF FURUTA INEQUALITY OF INDEFINITE TYPE
    Bebiano, N.
    Lemos, R.
    da Providencia, J.
    Soares, G.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (03): : 523 - 535
  • [50] OPERATOR-FUNCTIONS ASSOCIATED WITH FURUTA INEQUALITY
    FUJII, M
    FURUTA, T
    KAMEI, E
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 149 : 91 - 96