REVERSE OF THE GRAND FURUTA INEQUALITY AND ITS APPLICATIONS

被引:2
|
作者
Fujii, Masatoshi [1 ]
Nakamoto, Ritsuo [1 ]
Tominaga, Masaru [2 ]
机构
[1] Ibaraki Univ, Fac Engn, Hitachi, Ibaraki 3160033, Japan
[2] Toyama Natl Coll Technol, Toyama 9398630, Japan
来源
BANACH JOURNAL OF MATHEMATICAL ANALYSIS | 2008年 / 2卷 / 02期
关键词
grand Furuta inequality; Furuta inequality; Lowner-Heinz inequality; Araki-Cordes inequality; Bebiano-Lemos-Providencia inequality; norm inequality; positive operator; operator inequality; reverse inequality;
D O I
10.15352/bjma/1240336289
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall give a norm inequality equivalent to the grand Furuta inequality, and moreover show its reverse as follows: Let A and B be positive operators such that 0 < m <= B <= M for some scalars 0 < m < M and h :(-) M/m > 1. Then parallel to A(1/2) {A(-t/2) (A(r/2) B((r-t){(p-t) s+r}/1-t+r) A(r/2))(1/s) A(-t/2)}(1/p) A(1/2)parallel to <= K(h(r-t), (p-t)s+r/1-t+r)(1/ps) parallel to A(1-t+r/2) Br-t A(1-t+r/2) parallel to((p-t)s+r/ps(1-t+r)) for 0 <= t <= 1, p >= 1, s >= 1 and r >= t >= 0, where K(h,p) is the generalized Kantorovich constant. As applications, we consider reverses related to the Ando-Hiai inequality.
引用
收藏
页码:23 / 30
页数:8
相关论文
共 50 条
  • [31] Generalizations of Furuta's inequality
    Dragomir, S. S.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (05): : 617 - 626
  • [32] Furuta inequality of indefinite type
    Sano, Takashi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (02): : 381 - 387
  • [33] Complete form of Furuta inequality
    Yuan, Jiangtao
    Gao, Zongsheng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (08) : 2859 - 2867
  • [34] The Furuta inequality in Banach *-algebras
    Tanahashi, O
    Uchiyama, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (06) : 1691 - 1695
  • [35] ON A REVERSE OF THE TAN-XIE INEQUALITY FOR SECTOR MATRICES AND ITS APPLICATIONS
    Nasiri, Leila
    Furuichi, Shigeru
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1425 - 1434
  • [36] The Furuta inequality and Furuta type operator functions under chaotic order
    Yuan, Jiangtao
    Gao, Zongsheng
    ACTA SCIENTIARUM MATHEMATICARUM, 2007, 73 (3-4): : 669 - 681
  • [37] A GENERAL HLAWKA INEQUALITY AND ITS REVERSE INEQUALITY
    Takahashi, Yasuji
    Takahasi, Sin-Ei
    Wada, Shuhei
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2009, 12 (01): : 1 - 10
  • [38] An order preserving inequality via Furuta inequality, II
    Yang, CS
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 331 (1-3) : 89 - 100
  • [39] FURUTA INEQUALITY AND A GENERALIZATION OF ANDO THEOREM
    FUJII, M
    KAMEI, E
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (02) : 409 - 413
  • [40] AN ORDER PRESERVING INEQUALITY FOR THREE OPERATORS VIA FURUTA INEQUALITY
    Yang Changsen
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (04) : 998 - 1002