Topology-Imbalance Learning for Semi-Supervised Node Classification

被引:0
|
作者
Chen, Deli [1 ,2 ]
Lin, Yankai [1 ]
Zhao, Guangxiang [2 ]
Ren, Xuancheng [2 ]
Li, Peng [1 ]
Zhou, Jie [1 ]
Sun, Xu [2 ]
机构
[1] Tencent Inc, WeChat AI, Pattern Recognit Ctr, Shenzhen, Peoples R China
[2] Peking Univ, Sch EECS, MOE Key Lab Computat Linguist, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The class imbalance problem, as an important issue in learning node representations, has drawn increasing attention from the community. Although the imbalance considered by existing studies roots from the unequal quantity of labeled examples in different classes (quantity imbalance), we argue that graph data expose a unique source of imbalance from the asymmetric topological properties of the labeled nodes, i.e., labeled nodes are not equal in terms of their structural role in the graph (topology imbalance). In this work, we first probe the previously unknown topology-imbalance issue, including its characteristics, causes, and threats to semi-supervised node classification learning. We then provide a unified view to jointly analyzing the quantity- and topology- imbalance issues by considering the node influence shift phenomenon with the Label Propagation algorithm. In light of our analysis, we devise an influence conflict detection-based metric Totoro to measure the degree of graph topology imbalance and propose a model-agnostic method ReNode to address the topology-imbalance issue by re-weighting the influence of labeled nodes adaptively based on their relative positions to class boundaries. Systematic experiments demonstrate the effectiveness and generalizability of our method in relieving topology-imbalance issue and promoting semi-supervised node classification. The further analysis unveils varied sensitivity of different graph neural networks (GNNs) to topology imbalance, which may serve as a new perspective in evaluating GNN architectures.(1)
引用
收藏
页数:13
相关论文
共 50 条
  • [31] TEXT CLASSIFICATION BASED ON SEMI-SUPERVISED LEARNING
    Vo Duy Thanh
    Vo Trung Hung
    Pham Minh Tuan
    Doan Van Ban
    2013 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2013, : 232 - 236
  • [32] Extreme semi-supervised learning for multiclass classification
    Chen, Chuangquan
    Gan, Yanfen
    Vong, Chi-Man
    NEUROCOMPUTING, 2020, 376 : 103 - 118
  • [33] Using semi-supervised learning for question classification
    Tri, Nguyen Thanh
    Le, Nguyen Minh
    Shimazu, Akira
    COMPUTER PROCESSING OF ORIENTAL LANGUAGES, PROCEEDINGS: BEYOND THE ORIENT: THE RESEARCH CHALLENGES AHEAD, 2006, 4285 : 31 - +
  • [34] Semi-Supervised Text Classification With Universum Learning
    Liu, Chien-Liang
    Hsaio, Wen-Hoar
    Lee, Chia-Hoang
    Chang, Tao-Hsing
    Kuo, Tsung-Hsun
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (02) : 462 - 473
  • [35] Participatory Learning based Semi-supervised Classification
    Deng, Chao
    Guo, Mao-Zu
    Liu, Yang
    Li, Hai-Feng
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2008, : 207 - 216
  • [36] News Classification with Semi-Supervised and Active Learning
    Guo C.
    Chao Y.
    Data Analysis and Knowledge Discovery, 2022, 6 (04) : 28 - 38
  • [37] Malware Classification Based on Semi-Supervised Learning
    Ding, Yu
    Zhang, XiaoYu
    Li, BinBin
    Xing, Jian
    Qiang, Qian
    Qi, ZiSen
    Guo, MengHan
    Jia, SiYu
    Wang, HaiPing
    SCIENCE OF CYBER SECURITY, SCISEC 2022, 2022, 13580 : 287 - 301
  • [38] Deep graph learning for semi-supervised classification
    Lin, Guangfeng
    Kang, Xiaobing
    Liao, Kaiyang
    Zhao, Fan
    Chen, Yajun
    PATTERN RECOGNITION, 2021, 118
  • [39] Spectral Kernel Learning for Semi-Supervised Classification
    Liu, Wei
    Qian, Buyue
    Cui, Jingyu
    Liu, Jianzhuang
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1150 - 1155
  • [40] Semi-supervised learning for Bayesian pattern classification
    Center, JL
    Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 2005, 803 : 517 - 524