Topology-Imbalance Learning for Semi-Supervised Node Classification

被引:0
|
作者
Chen, Deli [1 ,2 ]
Lin, Yankai [1 ]
Zhao, Guangxiang [2 ]
Ren, Xuancheng [2 ]
Li, Peng [1 ]
Zhou, Jie [1 ]
Sun, Xu [2 ]
机构
[1] Tencent Inc, WeChat AI, Pattern Recognit Ctr, Shenzhen, Peoples R China
[2] Peking Univ, Sch EECS, MOE Key Lab Computat Linguist, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The class imbalance problem, as an important issue in learning node representations, has drawn increasing attention from the community. Although the imbalance considered by existing studies roots from the unequal quantity of labeled examples in different classes (quantity imbalance), we argue that graph data expose a unique source of imbalance from the asymmetric topological properties of the labeled nodes, i.e., labeled nodes are not equal in terms of their structural role in the graph (topology imbalance). In this work, we first probe the previously unknown topology-imbalance issue, including its characteristics, causes, and threats to semi-supervised node classification learning. We then provide a unified view to jointly analyzing the quantity- and topology- imbalance issues by considering the node influence shift phenomenon with the Label Propagation algorithm. In light of our analysis, we devise an influence conflict detection-based metric Totoro to measure the degree of graph topology imbalance and propose a model-agnostic method ReNode to address the topology-imbalance issue by re-weighting the influence of labeled nodes adaptively based on their relative positions to class boundaries. Systematic experiments demonstrate the effectiveness and generalizability of our method in relieving topology-imbalance issue and promoting semi-supervised node classification. The further analysis unveils varied sensitivity of different graph neural networks (GNNs) to topology imbalance, which may serve as a new perspective in evaluating GNN architectures.(1)
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Semi-supervised Learning for Image Modality Classification
    de Herrera, Alba Garcia Seco
    Markonis, Dimitrios
    Joyseeree, Ranveer
    Schaer, Roger
    Foncubierta-Rodriguez, Antonio
    Mueller, Henning
    MULTIMODAL RETRIEVAL IN THE MEDICAL DOMAIN, MRMD 2015, 2015, 9059 : 85 - 98
  • [22] VideoSSL: Semi-Supervised Learning for Video Classification
    Jing, Longlong
    Parag, Toufiq
    Wu, Zhe
    Tian, Yingli
    Wang, Hongcheng
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1109 - 1118
  • [23] Semi-Supervised Classification Based on Transformed Learning
    Kang Z.
    Liu L.
    Han M.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2023, 60 (01): : 103 - 111
  • [24] A review of semi-supervised learning for text classification
    Duarte, Jose Marcio
    Berton, Lilian
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 9401 - 9469
  • [25] Safe semi-supervised learning for pattern classification
    Ma, Jun
    Yu, Guolin
    Xiong, Weizhi
    Zhu, Xiaolong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [26] Semi-supervised learning for question classification in CQA
    Li, Yiyang
    Su, Lei
    Chen, Jun
    Yuan, Liwei
    NATURAL COMPUTING, 2017, 16 (04) : 567 - 577
  • [27] Integrated Semi-Supervised Model for Learning and Classification
    Bhalla, Vandna
    Chaudhury, Santanu
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON COMPUTER VISION AND IMAGE PROCESSING, CVIP 2018, VOL 1, 2020, 1022 : 183 - 195
  • [28] SEMI-SUPERVISED LEARNING FOR MARS IMAGERY CLASSIFICATION
    Wang, Wenjing
    Lin, Lilang
    Fan, Zejia
    Liu, Baying
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 499 - 503
  • [29] Semi-supervised learning for photometric supernova classification
    Richards, Joseph W.
    Homrighausen, Darren
    Freeman, Peter E.
    Schafer, Chad M.
    Poznanski, Dovi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 419 (02) : 1121 - 1135
  • [30] Multimodal semi-supervised learning for image classification
    Guillaumin, Matthieu
    Verbeek, Jakob
    Schmid, Cordelia
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 902 - 909