Topology-Imbalance Learning for Semi-Supervised Node Classification

被引:0
|
作者
Chen, Deli [1 ,2 ]
Lin, Yankai [1 ]
Zhao, Guangxiang [2 ]
Ren, Xuancheng [2 ]
Li, Peng [1 ]
Zhou, Jie [1 ]
Sun, Xu [2 ]
机构
[1] Tencent Inc, WeChat AI, Pattern Recognit Ctr, Shenzhen, Peoples R China
[2] Peking Univ, Sch EECS, MOE Key Lab Computat Linguist, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The class imbalance problem, as an important issue in learning node representations, has drawn increasing attention from the community. Although the imbalance considered by existing studies roots from the unequal quantity of labeled examples in different classes (quantity imbalance), we argue that graph data expose a unique source of imbalance from the asymmetric topological properties of the labeled nodes, i.e., labeled nodes are not equal in terms of their structural role in the graph (topology imbalance). In this work, we first probe the previously unknown topology-imbalance issue, including its characteristics, causes, and threats to semi-supervised node classification learning. We then provide a unified view to jointly analyzing the quantity- and topology- imbalance issues by considering the node influence shift phenomenon with the Label Propagation algorithm. In light of our analysis, we devise an influence conflict detection-based metric Totoro to measure the degree of graph topology imbalance and propose a model-agnostic method ReNode to address the topology-imbalance issue by re-weighting the influence of labeled nodes adaptively based on their relative positions to class boundaries. Systematic experiments demonstrate the effectiveness and generalizability of our method in relieving topology-imbalance issue and promoting semi-supervised node classification. The further analysis unveils varied sensitivity of different graph neural networks (GNNs) to topology imbalance, which may serve as a new perspective in evaluating GNN architectures.(1)
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Overcoming graph topology imbalance for inductive and scalable semi-supervised learning
    Dornaika, F.
    Ibrahim, Z.
    Bosaghzadeh, A.
    APPLIED SOFT COMPUTING, 2024, 151
  • [2] Semi-Supervised Node Classification Algorithm Based on Hierarchical Contrastive Learning
    Li, Yaqi
    Wang, Jie
    Wang, Feng
    Liang, Jiye
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (08): : 712 - 720
  • [3] GraphFL: A Federated Learning Framework for Semi-Supervised Node Classification on Graphs
    Wang, Binghui
    Li, Ang
    Pang, Meng
    Li, Hai
    Chen, Yiran
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 498 - 507
  • [4] Semi-supervised metric learning via topology preserving multiple semi-supervised assumptions
    Wang, Qianying
    Yuen, Pong C.
    Feng, Guocan
    PATTERN RECOGNITION, 2013, 46 (09) : 2576 - 2587
  • [5] Semi-Supervised Learning for ECG Classification
    Rodrigues, Rui
    Couto, Paula
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [6] Augmentation Learning for Semi-Supervised Classification
    Frommknecht, Tim
    Zipf, Pedro Alves
    Fan, Quanfu
    Shvetsova, Nina
    Kuehne, Hilde
    PATTERN RECOGNITION, DAGM GCPR 2022, 2022, 13485 : 85 - 98
  • [7] Semi-Supervised Learning for Classification with Uncertainty
    Zhang, Rui
    Liu, Tong-bo
    Zheng, Ming-wen
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 3584 - 3590
  • [8] Label-guided graph contrastive learning for semi-supervised node classification
    Peng, Meixin
    Juan, Xin
    Li, Zhanshan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [9] Semi-supervised node classification via graph learning convolutional neural network
    Kangjie Li
    Wenjing Ye
    Applied Intelligence, 2022, 52 : 12724 - 12736
  • [10] Learning ladder neural networks for semi-supervised node classification in social network
    Li, Bentian
    Pi, Dechang
    Lin, Yunxia
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165