Learning Without Peeking: Secure Multi-party Computation Genetic Programming

被引:1
|
作者
Kim, Jinhan [1 ]
Epitropakis, Michael G. [2 ]
Yoo, Shin [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Comp, Daejeon, South Korea
[2] Univ Lancaster, Dept Management Sci, Lancaster, England
基金
新加坡国家研究基金会;
关键词
ALGORITHMS;
D O I
10.1007/978-3-319-99241-9_13
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Genetic Programming is widely used to build predictive models for defect proneness or development efforts. The predictive modelling often depends on the use of sensitive data, related to past faults or internal resources, as training data. We envision a scenario in which revealing the training data constitutes a violation of privacy. To ensure organisational privacy in such a scenario, we propose SMCGP, a method that performs Genetic Programming as Secure Multiparty Computation. In SMCGP, one party uses GP to learn a model of training data provided by another party, without actually knowing each datapoint in the training data. We present an SMCGP approach based on the garbled circuit protocol, which is evaluated using two problem sets: a widely studied symbolic regression benchmark, and a GP-based fault localisation technique with real world fault data from Defects4J benchmark. The results suggest that SMCGP can be equally accurate as the normal GP, but the cost of keeping the training data hidden can be about three orders of magnitude slower execution.
引用
收藏
页码:246 / 261
页数:16
相关论文
共 50 条
  • [21] Realistic Failures in Secure Multi-party Computation
    Zikas, Vassilis
    Hauser, Sarah
    Maurer, Ueli
    THEORY OF CRYPTOGRAPHY, 6TH THEORY OF CRYPTOGRAPHY CONFERENCE, TCC 2009, 2009, 5444 : 274 - 293
  • [22] Secure multi-party computation in large networks
    Dani, Varsha
    King, Valerie
    Movahedi, Mahnush
    Saia, Jared
    Zamani, Mahdi
    DISTRIBUTED COMPUTING, 2017, 30 (03) : 193 - 229
  • [23] Secure Multi-party Computation and Its Applications
    Veugen, Thijs
    INNOVATIONS FOR COMMUNITY SERVICES, I4CS 2022, 2022, 1585 : 3 - 5
  • [24] Social rational secure multi-party computation
    Wang, Yilei
    Liu, Zhe
    Wang, Hao
    Xu, Qiuliang
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (05): : 1067 - 1083
  • [25] A Verifiable Federated Learning Scheme Based on Secure Multi-party Computation
    Mou, Wenhao
    Fu, Chunlei
    Lei, Yan
    Hu, Chunqiang
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT II, 2021, 12938 : 198 - 209
  • [26] MPCFL: Towards Multi-party Computation for Secure Federated Learning Aggregation
    Kaminaga, Hiroki
    Awaysheh, Feras M.
    Alawadi, Sadi
    Kamm, Liina
    16TH IEEE/ACM INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING, UCC 2023, 2023,
  • [27] Optimally Efficient Multi-party Fair Exchange and Fair Secure Multi-party Computation
    Alper, Handan Kilinc
    Kupcu, Alptekin
    ACM TRANSACTIONS ON PRIVACY AND SECURITY, 2022, 25 (01)
  • [28] Malicious Computation Prevention Protocol for Secure Multi-Party Computation
    Mishra, Durgesh Kumar
    Koria, Neha
    Kapoor, Nikhil
    Bahety, Ravish
    TENCON 2009 - 2009 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2009, : 490 - +
  • [29] MULTI-PARTY SECURE COMPUTATION OF MULTI-VARIABLE POLYNOMIALS
    Kosolapov, Yu. V.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2023, 16 (01): : 81 - 95
  • [30] Minimal Complete Primitives for Secure Multi-Party Computation
    Matthias Fitzi
    Juan A. Garay
    Ueli Maurer
    Rafail Ostrovsky
    Journal of Cryptology, 2005, 18 : 37 - 61