MPCFL: Towards Multi-party Computation for Secure Federated Learning Aggregation

被引:2
|
作者
Kaminaga, Hiroki [1 ]
Awaysheh, Feras M. [2 ]
Alawadi, Sadi [3 ]
Kamm, Liina [1 ]
机构
[1] Cybernetica AS, Informat Secur Res Inst, Tallinn, Estonia
[2] Univ Tartu, Inst Comp Scince, Delta Ctr, Tartu, Estonia
[3] Blekinge Inst Technol, Dept Comp Sci, Karlskrona, Sweden
关键词
Federated Learning; Multi-party Computation; Secret Sharing; Privacy-preserving; Data Security;
D O I
10.1145/3603166.3632144
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the rapidly evolving machine learning (ML) and distributed systems realm, the escalating concern for data privacy naturally comes to the forefront of discussions. Federated learning (FL) emerges as a pivotal technology capable of addressing the inherent issues of centralized data privacy. However, FL architectures with centralized orchestration are still vulnerable, especially in the aggregation phase. A malicious server can exploit the aggregation process to learn about participants' data. This study proposes MPCFL, a secure FL algorithm based on secure multi-party computation (MPC) and secret sharing. The proposed algorithm leverages the Sharemind MPC framework to aggregate local model updates for securely formulating a global model. MPCFL provides practical mitigation of trending FL concerns, e.g., inference attack, gradient leakage attack, model poisoning, and model inversion. The algorithm is evaluated on several benchmark datasets and shows promising results. Our results demonstrate that the proposed algorithm is viable for developing secure and privacy-preserving FL applications, significantly improving all performance metrics while maintaining security and reliability. This investigation is a precursor to deeper explorations to craft robust FL aggregation algorithms.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Secure Byzantine resilient federated learning based on multi-party computation
    Gao, Hongfeng
    Huang, Hao
    Tian, Youliang
    Tongxin Xuebao/Journal on Communications, 2025, 46 (02): : 108 - 122
  • [2] A Verifiable Federated Learning Scheme Based on Secure Multi-party Computation
    Mou, Wenhao
    Fu, Chunlei
    Lei, Yan
    Hu, Chunqiang
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT II, 2021, 12938 : 198 - 209
  • [3] Secure Multi-Party Computation Framework in Decentralized Federated Learning for Histopathology Images
    Hosseini, Seyedeh Maryam
    Babaie, Morteza
    Tizhoosh, Hamid
    LABORATORY INVESTIGATION, 2023, 103 (03) : S1293 - S1294
  • [4] Cluster Based Secure Multi-party Computation in Federated Learning for Histopathology Images
    Hosseini, Seyedeh Maryam
    Sikaroudi, Milad
    Babaei, Morteza
    Tizhoosh, Hamid R.
    DISTRIBUTED, COLLABORATIVE, AND FEDERATED LEARNING, AND AFFORDABLE AI AND HEALTHCARE FOR RESOURCE DIVERSE GLOBAL HEALTH, DECAF 2022, FAIR 2022, 2022, 13573 : 110 - 118
  • [5] Secure Federated Learning for Multi-Party Network Monitoring
    Lytvyn, Oleksandr
    Nguyen, Giang
    IEEE ACCESS, 2024, 12 : 163262 - 163284
  • [6] Secure and efficient federated learning via novel multi-party computation and compressed sensing
    Chen, Lvjun
    Xiao, Di
    Yu, Zhuyang
    Zhang, Maolan
    INFORMATION SCIENCES, 2024, 667
  • [7] Partially Encrypted Multi-Party Computation for Federated Learning
    Sotthiwat, Ekanut
    Zhen, Liangli
    Li, Zengxiang
    Zhang, Chi
    21ST IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2021), 2021, : 828 - 835
  • [8] Secure Multi-Party Computation
    Bayatbabolghani, Fattaneh
    Blanton, Marina
    PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), 2018, : 2157 - 2159
  • [9] Secure Multi-Party Computation for Machine Learning: A Survey
    Zhou, Ian
    Tofigh, Farzad
    Piccardi, Massimo
    Abolhasan, Mehran
    Franklin, Daniel
    Lipman, Justin
    IEEE ACCESS, 2024, 12 : 53881 - 53899
  • [10] Secure and Efficient Federated Learning via Novel Authenticable Multi-Party Computation and Compressed Sensing
    Chen, Lvjun
    Xiao, Di
    Xiao, Xiangli
    Zhang, Yushu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 10141 - 10156