Deep Learning for Real -time, Automatic, and Scanner-adapted Prostate (Zone) Segmentation of Transrectal Ultrasound, for Example, Magnetic Resonance Imaging ?transrectal Ultrasound

被引:32
|
作者
van Sloun, Ruud J. G. [1 ]
Wildeboer, Rogier R. [2 ]
Mannaerts, Christophe K. [2 ]
Postema, Arnoud W. [2 ]
Gayet, Maudy [3 ]
Beerlage, Harrie P. [1 ,2 ]
Salomon, Georg [4 ]
Wijkstra, Hessel [1 ,2 ]
Mischi, Massimo [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, Lab Biomed Diagnost, Eindhoven, Netherlands
[2] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Urol, Amsterdam, Netherlands
[3] Jeroen Bosch Hosp, Dept Urol, Shertogenbosch, Netherlands
[4] Univ Hosp Hamburg Eppendorf, Martini Klin, Prostate Canc Ctr, Hamburg, Germany
来源
EUROPEAN UROLOGY FOCUS | 2021年 / 7卷 / 01期
基金
欧洲研究理事会;
关键词
Deep learning; Prostate cancer; Segmentation; Ultrasound magnetic resonance imaging? transrectal ultrasound fusion biopsy; IN-BORE; BIOPSY; ANATOMY; BRACHYTHERAPY; FUSION; IMAGES; MRI;
D O I
10.1016/j.euf.2019.04.009
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background: Although recent advances in multiparametric magnetic resonance imag-ing (MRI) led to an increase in MRI-transrectal ultrasound (TRUS) fusion prostate biopsies, these are time consuming, laborious, and costly. Introduction of deep-learning approach would improve prostate segmentation. Objective: To exploit deep learning to perform automatic, real-time prostate (zone) segmentation on TRUS images from different scanners. Design, setting, and participants: Three datasets with TRUS images were collected at different institutions, using an iU22 (Philips Healthcare, Bothell, WA, USA), a Pro Focus 2202a (BK Medical), and an Aixplorer (SuperSonic Imagine, Aix-en-Provence, France) ultrasound scanner. The datasets contained 436 images from 181 men. Outcome measurements and statistical analysis: Manual delineations from an expert panel were used as ground truth. The (zonal) segmentation performance was evaluated in terms of the pixel-wise accuracy, Jaccard index, and Hausdorff distance. Results and limitations: The developed deep-learning approach was demonstrated to significantly improve prostate segmentation compared with a conventional automated technique, reaching median accuracy of 98% (95% confidence interval 95-99%), a Jaccard index of 0.93 (0.80-0.96), anda Hausdorff distance of 3.0 (1.3-8.7) mm. Zonal segmentation yielded pixel-wise accuracy of 97% (95-99%) and 98% (96-99%) for the peripheral and transition zones, respectively. Supervised domain adaptation resulted in retainment of high performance when applied to images from different ultrasound scanners (p > 0.05). Moreover, the algorithm's assessment of its own segmentation performance showed a strong correlation with the actual segmentation performance (Pearson's correlation 0.72, p < 0.001), indicating that possible incorrect segmentations can be identified swiftly. Conclusions: Fusion-guided prostate biopsies, targeting suspicious lesions on MRI using TRUS are increasingly performed. The requirement for (semi)manual prostate delineation places a substantial burden on clinicians. Deep learning provides a means for fast and accurate (zonal) prostate segmentation of TRUS images that translates to different scanners.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 50 条
  • [1] Automatic segmentation of prostate in transrectal ultrasound imaging
    Cheng, G
    Liu, HS
    Rubens, DJ
    Strang, JG
    Liao, L
    Yu, Y
    RADIOLOGY, 2001, 218 (02) : 612 - 612
  • [2] Prostate segmentation in transrectal ultrasound using magnetic resonance imaging priors
    Qi Zeng
    Golnoosh Samei
    Davood Karimi
    Claudia Kesch
    Sara S. Mahdavi
    Purang Abolmaesumi
    Septimiu E. Salcudean
    International Journal of Computer Assisted Radiology and Surgery, 2018, 13 : 749 - 757
  • [3] Prostate segmentation in transrectal ultrasound using magnetic resonance imaging priors
    Zeng, Qi
    Samei, Golnoosh
    Karimi, Davood
    Kesch, Claudia
    Mahdavi, Sara S.
    Abolmaesumi, Purang
    Salcudean, Septimiu E.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2018, 13 (06) : 749 - 757
  • [4] Automatic segmentation of prostate boundaries in transrectal ultrasound (TRUS) imaging
    Liu, HS
    Cheng, G
    Rubens, DB
    Strang, J
    Liao, L
    Brasacchio, R
    Messing, E
    Yu, Y
    MEDICAL IMAGING 2002: IMAGE PROCESSING, VOL 1-3, 2002, 4684 : 412 - 423
  • [5] Automatic Prostate Segmentation from Transrectal Ultrasound Images
    Yu, Yanyan
    Cheng, Jieyu
    Li, Jizhou
    Chen, Weifu
    Chiu, Bernard
    2014 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2014, : 117 - 120
  • [6] Zonal segmentation in transrectal ultrasound images of the prostate through deep learning
    van Sloun, R. J. G.
    Wildeboer, R. R.
    Postema, A. W.
    Mannaerts, C. K.
    Gayet, M.
    Wijkstra, H.
    Mischi, M.
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [7] COMPARISON OF PROSTATE VOLUME MEASURED BY TRANSRECTAL ULTRASOUND AND MAGNETIC RESONANCE IMAGING
    Weiss, Brian
    Wein, Alan
    Malkowicz, S. Bruce
    Guzzo, Thomas
    JOURNAL OF UROLOGY, 2012, 187 (04): : E828 - E828
  • [8] Environmental Impact of Prostate Magnetic Resonance Imaging and Transrectal Ultrasound Guided Prostate Biopsy
    Leapman, Michael S.
    Thiel, Cassandra L.
    Gordon, Ilyssa O.
    Nolte, Adam C.
    Perecman, Aaron
    Loeb, Stacy
    Overcash, Michael
    Sherman, Jodi D.
    EUROPEAN UROLOGY, 2023, 83 (05) : 463 - 471
  • [9] The Comparison of Magnetic Resonance Imaging/Transrectal Ultrasound Fusion Biopsies with Conventional Transrectal Biopsies in Prostate Cancer Detection
    Baba, Dursun
    Balik, Ahmet Yildirim
    Yuksel, Alpaslan
    Senoglu, Yusuf
    UROONKOLOJI BULTENI-BULLETIN OF UROONCOLOGY, 2021, 20 (04): : 210 - 214
  • [10] Multiparametric magnetic resonance imaging/transrectal ultrasound fusion-guided prostate biopsy: a comparison with systematic transrectal ultrasound-guided prostate biopsy
    Silecchia, G.
    Falagario, U.
    Sanguedolce, F.
    Macarini, L.
    Autorino, R.
    Cormio, L.
    JOURNAL OF GERONTOLOGY AND GERIATRICS, 2018, 66 (04): : 200 - 204