Morphological Characterization of a Low-Bandgap Crystalline Polymer:PCBM Bulk Heterojunction Solar Cells

被引:77
|
作者
Lu, Haiyun [1 ]
Akgun, Bulent [2 ,3 ]
Russell, Thomas P. [1 ]
机构
[1] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA
[2] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA
[3] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
SELF-ORGANIZATION; PHASE-SEPARATION; ACTIVE LAYERS; BLEND FILMS; PERFORMANCE; INTERFACE; EVOLUTION; ATOM;
D O I
10.1002/aenm.201100128
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the morphology of polymer-based bulk heterojunction (BHJ) solar cells is necessary to improve device efficiencies. Blends of a low-bandgap silole-containing conjugated polymer, poly[(4,4'-bis(2-ethylhexyl) dithieno[3,2-b;2',3'-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5'-diyl] (PSBTBT) with [6,6] phenyl-C61-butyric acid methyl ester (PCBM) were investigated under different processing conditions. The surface morphologies and vertical segregation of the "As-Spun", "Pre-Annealed", and "Post-Annealed" films were studied by scanning force microscopy, contact angle measurements, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, dynamic secondary ion mass spectrometry, and neutron reflectivity. The results showed that PSBTBT was enriched at the cathode interface in the "As-Spun" films and thermal annealing increased the segregation of PSBTBT to the free surface, while thermal annealing after deposition of the cathode increased the PCBM concentration at the cathode interface. Grazing-incidence X-ray diffraction and small-angle neutron scattering showed that the crystallization of PSBTBT and segregation of PCBM occurred during spin coating, and thermal annealing increased the ordering of PSBTBT and enhanced the segregation of the PCBM, forming domains similar to 10 nm in size, leading to an improvement in photo voltaic performance.
引用
收藏
页码:870 / 878
页数:9
相关论文
共 50 条
  • [41] Photovoltaic Properties of DBPYM: PCBM Bulk Heterojunction Solar Cells
    Sharma, S. S.
    PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS & MATERIAL SCIENCE (RAM 2013), 2013, 1536 : 381 - 382
  • [42] Low band gap polymer bulk heterojunction solar cells
    Wienk, Martijn M.
    Struijk, Martin P.
    Janssen, Rene A. J.
    CHEMICAL PHYSICS LETTERS, 2006, 422 (4-6) : 488 - 491
  • [43] How stable are polymer: PCBM bulk heterojunction solar cells? - art. no. 619225
    Bertho, S.
    Haeldermans, I.
    Swinnen, A.
    D'Haen, J.
    Lutsen, L.
    Manca, J. V.
    Vanderzande, D. J. M.
    Organic Optoelectronics and Photonics II, 2006, 6192 : 19225 - 19225
  • [44] Charge Transport and Recombination in Low-Bandgap Bulk Heterojunction Solar Cell using Bis-adduct Fullerene
    Azimi, Hamed
    Senes, Alessia
    Scharber, Markus C.
    Hingerl, Kurt
    Brabec, Christoph J.
    ADVANCED ENERGY MATERIALS, 2011, 1 (06) : 1162 - 1168
  • [45] Investigation on the Effects of Thermal Annealing on PCDTBT:PCBM Bulk-Heterojunction Polymer Solar Cells
    Gusain, Abhay
    Saxena, Vibha
    Veerender, P.
    Jha, P.
    Koiry, S. P.
    Chauhan, A. K.
    Aswal, D. K.
    Gupta, S. K.
    SOLID STATE PHYSICS, VOL 57, 2013, 1512 : 776 - 777
  • [46] Wide-bandgap, low-bandgap, and tandem perovskite solar cells
    Song, Zhaoning
    Chen, Cong
    Li, Chongwen
    Awni, Rasha A.
    Zhao, Dewei
    Yan, Yanfa
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (09)
  • [47] Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells
    Chen, Chih-Ping
    Chan, Shu-Hua
    Chao, Teng-Chih
    Ting, Ching
    Ko, Bao-Tsan
    Journal of the American Chemical Society, 2008, 130 (38): : 12828 - 12833
  • [48] Performance improvement of low bandgap polymer bulk heterojunction solar cells by incorporating P3HT
    Lin, Rui
    Wright, Matthew
    Chan, Kah Howe
    Puthen-Veettil, Binesh
    Sheng, Rui
    Wen, Xiaoming
    Uddin, Ashraf
    ORGANIC ELECTRONICS, 2014, 15 (11) : 2837 - 2846
  • [49] Bulk Heterojunction Polymer Solar Cells
    Gao Yurong
    Ma Tingli
    PROGRESS IN CHEMISTRY, 2011, 23 (05) : 991 - 1013
  • [50] Low-Bandgap Donor/Acceptor Polymer Blend Solar Cells with Efficiency Exceeding 4%
    Mori, Daisuke
    Benten, Hiroaki
    Okada, Izumi
    Ohkita, Hideo
    Ito, Shinzaburo
    ADVANCED ENERGY MATERIALS, 2014, 4 (03)