Morphological Characterization of a Low-Bandgap Crystalline Polymer:PCBM Bulk Heterojunction Solar Cells

被引:77
|
作者
Lu, Haiyun [1 ]
Akgun, Bulent [2 ,3 ]
Russell, Thomas P. [1 ]
机构
[1] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA
[2] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA
[3] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
SELF-ORGANIZATION; PHASE-SEPARATION; ACTIVE LAYERS; BLEND FILMS; PERFORMANCE; INTERFACE; EVOLUTION; ATOM;
D O I
10.1002/aenm.201100128
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the morphology of polymer-based bulk heterojunction (BHJ) solar cells is necessary to improve device efficiencies. Blends of a low-bandgap silole-containing conjugated polymer, poly[(4,4'-bis(2-ethylhexyl) dithieno[3,2-b;2',3'-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5'-diyl] (PSBTBT) with [6,6] phenyl-C61-butyric acid methyl ester (PCBM) were investigated under different processing conditions. The surface morphologies and vertical segregation of the "As-Spun", "Pre-Annealed", and "Post-Annealed" films were studied by scanning force microscopy, contact angle measurements, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, dynamic secondary ion mass spectrometry, and neutron reflectivity. The results showed that PSBTBT was enriched at the cathode interface in the "As-Spun" films and thermal annealing increased the segregation of PSBTBT to the free surface, while thermal annealing after deposition of the cathode increased the PCBM concentration at the cathode interface. Grazing-incidence X-ray diffraction and small-angle neutron scattering showed that the crystallization of PSBTBT and segregation of PCBM occurred during spin coating, and thermal annealing increased the ordering of PSBTBT and enhanced the segregation of the PCBM, forming domains similar to 10 nm in size, leading to an improvement in photo voltaic performance.
引用
收藏
页码:870 / 878
页数:9
相关论文
共 50 条
  • [21] Dye Sensitization in the Visible Region for Low-Bandgap Polymer Solar Cells
    Wang, Yanbin
    Zheng, Bo
    Tamai, Yasunari
    Ohkita, Hideo
    Benten, Hiroaki
    Ito, Shinzaburo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (07) : D3093 - D3096
  • [22] Kinetic Monte Carlo Modeling of Low-Bandgap Polymer Solar Cells
    Albes, Tim
    Popescu, Bogdan
    Popescu, Dan
    Loch, Marius
    Arca, Francesco
    Lugli, Paolo
    2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, : 57 - 62
  • [23] Broadband-absorbing hybrid solar cells with efficiency greater than 3% based on a bulk heterojunction of PbS quantum dots and a low-bandgap polymer
    Nam, Minwoo
    Park, Joongpil
    Kim, Sang-Wook
    Lee, Keekeun
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (11) : 3978 - 3985
  • [24] High-Efficiency All-Polymer Solar Cells Based on a Pair of Crystalline Low-Bandgap Polymers
    Mu, Cheng
    Liu, Peng
    Ma, Wei
    Jiang, Kui
    Zhao, Jingbo
    Zhang, Kai
    Chen, Zhihua
    Wei, Zhanhua
    Yi, Ya
    Wang, Jiannong
    Yang, Shihe
    Huang, Fei
    Facchetti, Antonio
    Ade, Harald
    Yan, He
    ADVANCED MATERIALS, 2014, 26 (42) : 7224 - 7230
  • [25] Synthesis and characterization of low bandgap conjugated donor-acceptor polymers for polymer: PCBM solar cells
    Tu, Guoli
    Massip, Sylvain
    Oberhumer, Philipp M.
    He, Ximin
    Friend, Richard H.
    Greenham, Neil C.
    Huck, Wilhelm T. S.
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (41) : 9231 - 9238
  • [26] Low bandgap polymers for photon harvesting in bulk heterojunction solar cells
    Winder, C
    Sariciftci, NS
    JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (07) : 1077 - 1086
  • [27] Thienopyrazine-based low-bandgap polymers for flexible polymer solar cells
    Sensfuss, S.
    Blankenburg, L.
    Schache, H.
    Shokhovets, S.
    Erb, T.
    Konkin, A.
    Herasimovich, A.
    Scheinert, S.
    Shahid, M.
    Sell, S.
    Klemm, E.
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2010, 51 (03): : 33204 - p1
  • [28] Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols
    J. Peet
    J. Y. Kim
    N. E. Coates
    W. L. Ma
    D. Moses
    A. J. Heeger
    G. C. Bazan
    Nature Materials, 2007, 6 : 497 - 500
  • [29] Loss Mechanisms in Thick-Film Low-Bandgap Polymer Solar Cells
    Small, Cephas E.
    Tsang, Sai-Wing
    Chen, Song
    Baek, Sujin
    Amb, Chad M.
    Subbiah, Jegadesan
    Reynolds, John R.
    So, Franky
    ADVANCED ENERGY MATERIALS, 2013, 3 (07) : 909 - 916
  • [30] Stabilization of the film morphology in polymer: Fullerene heterojunction solar cells with photocrosslinkable bromine-functionalized low-bandgap copolymers
    Qian, Deping
    Xu, Qi
    Hou, Xuliang
    Wang, Fuzhi
    Hou, Jianhui
    Tan, Zhan'ao
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2013, 51 (15) : 3123 - 3131