Point Set Registration With Semantic Region Association Using Cascaded Expectation Maximization

被引:1
|
作者
Hu, Lan [1 ]
Wei, Jiaxin [1 ]
Ouyang, Zhanpeng [1 ]
Kneip, Laurent [1 ,2 ]
机构
[1] ShanghaiTech Univ, Mobile Percept Lab, Shanghai, Peoples R China
[2] Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
基金
上海市自然科学基金;
关键词
D O I
10.1109/ICRA48506.2021.9561140
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a new solution to point set registration, a fundamental geometric problem occurring in many computer vision and robotics applications. We consider the specific case in which the point sets are segmented into semantically annotated parts. Such information may for example come from object detection or instance-level semantic segmentation in a registered RGB image. Existing methods incorporate the additional information to restrict or re-weight the point-pair associations occurring throughout the registration process. We introduce a novel hierarchical association framework for a simultaneous inference of semantic region association likelihoods. The formulation is elegantly solved using cascaded expectation-maximization. We conclude by demonstrating a substantial improvement over existing alternatives on open RGBD datasets.
引用
收藏
页码:11234 / 11240
页数:7
相关论文
共 50 条
  • [41] 4 Collinear Points: Robust Point Set Registration Using Cross Ratio Invariance
    Wang, Yiru
    Liu, Yinlong
    Song, Zhijian
    Wang, Manning
    COMPUTER VISION, PT III, 2017, 773 : 540 - 550
  • [42] Adaptive Hierarchical Probabilistic Model Using Structured Variational Inference for Point Set Registration
    He, Qiqi
    Zhou, Jie
    Xu, Shijin
    Yang, Yang
    Yu, Rui
    Liu, Yuhe
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (11) : 2784 - 2798
  • [43] Bi-Stage Large Point Set Registration Using Gaussian Mixture Models
    Chen, Junfen
    Zaman, Munir
    Liao, Iman Yi
    Belaton, Bahari
    COMPUTER VISION - ACCV 2014, PT V, 2015, 9007 : 210 - 225
  • [44] NON-RIGID MULTIPLE POINT SET REGISTRATION USING LATENT GAUSSIAN MIXTURE
    Huang, Hao
    Chen, Cheng
    Fang, Yi
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3181 - 3185
  • [45] CoBigICP: Robust and Precise Point Set Registration using Correntropy Metrics and Bidirectional Correspondence
    Yin, Pengyu
    Wang, Di
    Du, Shaoyi
    Ying, Shihui
    Gao, Yue
    Zheng, Nanning
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 4694 - 4699
  • [46] A novel aerodynamic parameter estimation algorithm via sigma point Rauch–Tung–Striebel smoother using expectation maximization
    Wei Zhang
    Hongwei Wang
    Yilei Liu
    Junyi Zuo
    Heping Wang
    Cluster Computing, 2019, 22 : 6795 - 6806
  • [47] Interacting multiple model based tracking of multiple point targets using expectation maximization algorithm in infrared image sequence
    Zaveri, MA
    Desai, UB
    Merchant, SN
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2003, PTS 1-3, 2003, 5150 : 303 - 314
  • [48] SEMANTIC LABELING FOR POINT CLOUD DETECTION AND REGISTRATION USING THE UNIVERSAL MANIFOLD EMBEDDING: STATISTICAL ANALYSIS
    Francos, Joseph M.
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 21 - 25
  • [49] Robust 3D Point Set Registration Using Iterative Closest Point Algorithm with Bounded Rotation Angle
    Zhang, Chunjia
    Du, Shaoyi
    Liu, Juan
    Xue, Jianru
    SIGNAL PROCESSING, 2016, 120 : 777 - 788
  • [50] Robust Non-Rigid Point Set Registration Using Spatially Constrained Gaussian Fields
    Wang, Gang
    Zhou, Qiangqiang
    Chen, Yufei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (04) : 1759 - 1769