4 Collinear Points: Robust Point Set Registration Using Cross Ratio Invariance

被引:0
|
作者
Wang, Yiru [1 ,2 ]
Liu, Yinlong [1 ,2 ]
Song, Zhijian [1 ,2 ]
Wang, Manning [1 ,2 ]
机构
[1] Fudan Univ, Sch Basic Med Sci, Shanghai 200032, Peoples R China
[2] Fudan Univ, Digital Med Res Ctr, Shanghai Key Lab Med Imaging Comp & Comp Assisted, Shanghai 200032, Peoples R China
来源
COMPUTER VISION, PT III | 2017年 / 773卷
关键词
Point set registration; Cross ratio invariance; Projective transformation;
D O I
10.1007/978-981-10-7305-2_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a robust point set registration method based on the cross ratio invariance of 4 collinear points, which is able to deal with point set registration problem under the most general linear transformation, projective transformation. On the basis of all combinations of 4 collinear points extracted by Hough transform, meaningful correspondences are identified by combining the cross ratio invariance of 4 collinear points and Randomized RANSAC. At the end, the underlying projective transformation matrix was estimate in a least square sense. It has been shown in the simulation experiments that the proposed approach remains robust in high level of degradations, including 45% outliers and 40% overlap ratio. Experiments with Oxford corridor sequence and ZuBuD wide baseline image database proved its usefulness in real application.
引用
收藏
页码:540 / 550
页数:11
相关论文
共 50 条
  • [1] A robust algorithm for point set registration using mixture of Gaussians
    Jian, B
    Vemuri, BC
    TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 1246 - 1251
  • [2] Robust Point Set Registration Using Gaussian Mixture Models
    Jian, Bing
    Vemuri, Baba C.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1633 - 1645
  • [3] Robust Variational Bayesian Point Set Registration
    Zhou, Jie
    Ma, Xinke
    Liang, Li
    Yang, Yang
    Xu, Shijin
    Liu, Yuhe
    Ong, Sim Heng
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9904 - 9913
  • [4] Robust Point Set Registration Using Signature Quadratic Form Distance
    Li, Liang
    Yang, Ming
    Wang, Chunxiang
    Wang, Bing
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (05) : 2097 - 2109
  • [5] Robust Nonrigid Point Set Registration using Graph-Laplacian Regularization
    Panaganti, Varun
    Aravind, R.
    2015 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2015, : 1137 - 1144
  • [6] Robust Estimation of Nonrigid Transformation for Point Set Registration
    Ma, Jiayi
    Zhao, Ji
    Tian, Jinwen
    Tu, Zhuowen
    Yuille, Alan L.
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 2147 - 2154
  • [7] Robust Point Set Registration Based on Semantic Information
    Wang, Qinlong
    Yang, Yang
    Wan, Teng
    Du, Shaoyi
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 2553 - 2558
  • [8] Stochastic global optimization for robust point set registration
    Papazov, Chavdar
    Burschka, Darius
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2011, 115 (12) : 1598 - 1609
  • [9] Every Large Point Set contains Many Collinear Points or an Empty Pentagon
    Abel, Zachary
    Ballinger, Brad
    Bose, Prosenjit
    Collette, Sebastien
    Dujmovic, Vida
    Hurtado, Ferran
    Kominers, Scott Duke
    Langerman, Stefan
    Por, Attila
    Wood, David R.
    GRAPHS AND COMBINATORICS, 2011, 27 (01) : 47 - 60
  • [10] Every Large Point Set contains Many Collinear Points or an Empty Pentagon
    Zachary Abel
    Brad Ballinger
    Prosenjit Bose
    Sébastien Collette
    Vida Dujmović
    Ferran Hurtado
    Scott Duke Kominers
    Stefan Langerman
    Attila Pór
    David R. Wood
    Graphs and Combinatorics, 2011, 27 : 47 - 60