Application of Machine-Learning Methods to Understand Gene Expression Regulation

被引:7
|
作者
Cheng, Chao [1 ,2 ]
Worzel, William P. [3 ]
机构
[1] Geisel Sch Med Dartmouth, Dept Genet, Inst Quantitat Biomed Sci, Hanover, NH 03755 USA
[2] Geisel Sch Med Dartmouth, Norris Cotton Canc Ctr, Hanover, NH USA
[3] Evolut Enterprises, Milan, MI 48160 USA
关键词
TRANSCRIPTION FACTOR-BINDING; CELL-CYCLE; INTEGRATIVE ANALYSIS; CHROMATIN FEATURES; GENOME; IDENTIFICATION; ENHANCERS; LANGUAGE; ELEMENTS; NETWORK;
D O I
10.1007/978-3-319-16030-6_1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [41] Comparison of machine-learning methodologies for accurate diagnosis of sepsis using microarray gene expression data
    Schaack, Dominik
    Weigand, Markus A.
    Uhle, Florian
    PLOS ONE, 2021, 16 (05):
  • [42] Application of machine learning methods to understand and predict circulating fluidized bed riser flow characteristics
    Chew, Jia Wei
    Cocco, Ray A.
    CHEMICAL ENGINEERING SCIENCE, 2020, 217 (217)
  • [43] Application of machine learning to understand child marriage in India
    Raj, Anita
    Dehingia, Nabamallika
    Singh, Abhishek
    McDougal, Lotus
    McAuley, Julian
    SSM-POPULATION HEALTH, 2020, 12
  • [44] Application of Symbolic Inductive Learning Methods to Gene Expression Analyses
    Miskovic, Vladislav
    Milosavljevic, Milan
    NEUREL 2008: NINTH SYMPOSIUM ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING, PROCEEDINGS, 2008, : 94 - 97
  • [45] Keratoconus Diagnostic and Treatment Algorithms Based on Machine-Learning Methods
    Malyugin, Boris
    Sakhnov, Sergej
    Izmailova, Svetlana
    Boiko, Ernest
    Pozdeyeva, Nadezhda
    Axenova, Lyubov
    Axenov, Kirill
    Titov, Aleksej
    Terentyeva, Anna
    Zakaraiia, Tamriko
    Myasnikova, Viktoriya
    DIAGNOSTICS, 2021, 11 (10)
  • [46] Enhancing Machine-Learning Methods for Sentiment Classification of Web Data
    Wang, Zhaoxia
    Tong, Victor Joo Chuan
    Chin, Hoong Chor
    INFORMATION RETRIEVAL TECHNOLOGY, AIRS 2014, 2014, 8870 : 394 - 405
  • [47] Advanced Machine-Learning Methods for Brain-Computer Interfacing
    Lv, Zhihan
    Qiao, Liang
    Wang, Qingjun
    Piccialli, Francesco
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (05) : 1688 - 1698
  • [48] Modeling the Vibrational Relaxation Rate Using Machine-Learning Methods
    Bushmakova, M. A.
    Kustova, E. V.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2022, 55 (01) : 87 - 95
  • [49] Machine-Learning Methods for Earthquake Ground Motion Analysis and Simulation
    Alimoradi, Arzhang
    Beck, James L.
    JOURNAL OF ENGINEERING MECHANICS, 2015, 141 (04)
  • [50] Machine-learning methods for ligand-protein molecular docking
    Crampon, Kevin
    Giorkallos, Alexis
    Deldossi, Myrtille
    Baud, Stephanie
    Steffenel, Luiz Angelo
    DRUG DISCOVERY TODAY, 2022, 27 (01) : 151 - 164