Application of Machine-Learning Methods to Understand Gene Expression Regulation

被引:7
|
作者
Cheng, Chao [1 ,2 ]
Worzel, William P. [3 ]
机构
[1] Geisel Sch Med Dartmouth, Dept Genet, Inst Quantitat Biomed Sci, Hanover, NH 03755 USA
[2] Geisel Sch Med Dartmouth, Norris Cotton Canc Ctr, Hanover, NH USA
[3] Evolut Enterprises, Milan, MI 48160 USA
关键词
TRANSCRIPTION FACTOR-BINDING; CELL-CYCLE; INTEGRATIVE ANALYSIS; CHROMATIN FEATURES; GENOME; IDENTIFICATION; ENHANCERS; LANGUAGE; ELEMENTS; NETWORK;
D O I
10.1007/978-3-319-16030-6_1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [21] Travelling through levels of resolution with machine-learning methods
    Lemke, Tobias
    Hunkler, Simon
    Kukharenko, Oleksandra
    Peter, Christine
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [22] Review of Medical Decision Support and Machine-Learning Methods
    Awaysheh, Abdullah
    Wilcke, Jeffrey
    Elvinger, Francois
    Rees, Loren
    Fan, Weiguo
    Zimmerman, Kurt L.
    VETERINARY PATHOLOGY, 2019, 56 (04) : 512 - 525
  • [23] MEMS Accelerometers Classification Using Machine-Learning Methods
    Nevlydov, Igor
    Ponomaryova, Ganna
    Miliutina, Svitlana
    Bortnikova, Viktoriia
    2017 XIIITH INTERNATIONAL CONFERENCE ON PERSPECTIVE TECHNOLOGIES AND METHODS IN MEMS DESIGN (MEMSTECH), 2017, : 51 - 55
  • [24] Machine-learning approaches in drug discovery: methods and applications
    Lavecchia, Antonio
    DRUG DISCOVERY TODAY, 2015, 20 (03) : 318 - 331
  • [25] Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods
    Zheng, Suqing
    Wang, Yibing
    Liu, Hongmei
    Chang, Wenping
    Xu, Yong
    Lin, Fu
    CHEMICAL RESEARCH IN TOXICOLOGY, 2019, 32 (06) : 1014 - 1026
  • [26] An evaluation of machine-learning methods for predicting pneumonia mortality
    Cooper, GF
    Aliferis, CF
    Ambrosino, R
    Aronis, J
    Buchanan, BG
    Caruana, R
    Fine, MJ
    Glymour, C
    Gordon, G
    Hanusa, BH
    Janosky, JE
    Meek, C
    Mitchell, T
    Richardson, T
    Spirtes, P
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 1997, 9 (02) : 107 - 138
  • [27] Assessment of XCMS Optimization Methods with Machine-Learning Performance
    Lassen, Johan
    Nielsen, Kirstine Lykke
    Johannsen, Mogens
    Villesen, Palle
    ANALYTICAL CHEMISTRY, 2021, 93 (40) : 13459 - 13466
  • [28] Using machine-learning methods for musical style modeling
    Dubnov, S
    Assayag, G
    Lartillot, O
    Bejerano, G
    COMPUTER, 2003, 36 (10) : 73 - +
  • [29] Predicting loss aversion behavior with machine-learning methods
    Ömür Saltık
    Wasim ul Rehman
    Rıdvan Söyü
    Süleyman Değirmen
    Ahmet Şengönül
    Humanities and Social Sciences Communications, 10
  • [30] Predicting loss aversion behavior with machine-learning methods
    Saltik, Omur
    ul Rehman, Wasim
    Soyu, Ridvan
    Degirmen, Suleyman
    Sengonul, Ahmet
    HUMANITIES & SOCIAL SCIENCES COMMUNICATIONS, 2023, 10 (01):