Application of Machine-Learning Methods to Understand Gene Expression Regulation

被引:7
|
作者
Cheng, Chao [1 ,2 ]
Worzel, William P. [3 ]
机构
[1] Geisel Sch Med Dartmouth, Dept Genet, Inst Quantitat Biomed Sci, Hanover, NH 03755 USA
[2] Geisel Sch Med Dartmouth, Norris Cotton Canc Ctr, Hanover, NH USA
[3] Evolut Enterprises, Milan, MI 48160 USA
关键词
TRANSCRIPTION FACTOR-BINDING; CELL-CYCLE; INTEGRATIVE ANALYSIS; CHROMATIN FEATURES; GENOME; IDENTIFICATION; ENHANCERS; LANGUAGE; ELEMENTS; NETWORK;
D O I
10.1007/978-3-319-16030-6_1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Machine-Learning Methods for Complex Flows
    Vinuesa, Ricardo
    Le Clainche, Soledad
    ENERGIES, 2022, 15 (04)
  • [2] Application of the wavelet transform in machine-learning
    1600, Politechnica University of Bucharest (76):
  • [3] APPLICATION OF THE WAVELET TRANSFORM IN MACHINE-LEARNING
    Dumitrescu, Catalin
    Costea, Ilona Madalina
    Nemtanu, Florin Codrut
    Stan, Valentin Alexandru
    Gheorghiu, Andrei Razvan
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 167 - 178
  • [4] Machine-learning approaches to classify and understand emotion states in mice
    Nejc Dolensek
    Nadine Gogolla
    Neuropsychopharmacology, 2021, 46 : 250 - 251
  • [5] Machine-learning approaches to classify and understand emotion states in mice
    Dolensek, Nejc
    Gogolla, Nadine
    NEUROPSYCHOPHARMACOLOGY, 2021, 46 (01) : 250 - 251
  • [6] Application of machine-learning methods in forest ecology: recent progress and future challenges
    Liu, Zelin
    Peng, Changhui
    Work, Timothy
    Candau, Jean-Noel
    DesRochers, Annie
    Kneeshaw, Daniel
    ENVIRONMENTAL REVIEWS, 2018, 26 (04): : 339 - 350
  • [7] Methods for Automatic Machine-Learning Workflow Analysis
    Wendlinger, Lorenz
    Berndl, Emanuel
    Granitzer, Michael
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: APPLIED DATA SCIENCE TRACK, PT V, 2021, 12979 : 52 - 67
  • [8] A Machine-Learning Analysis of Flowering Gene Expression in the CDC Frontier Chickpea Cultivar
    Podolny B.S.
    Gursky V.V.
    Samsonova M.G.
    Biophysics, 2020, 65 (2) : 225 - 236
  • [9] Machine-Learning Methods on Noisy and Sparse Data
    Poulinakis, Konstantinos
    Drikakis, Dimitris
    Kokkinakis, Ioannis W.
    Spottswood, Stephen Michael
    MATHEMATICS, 2023, 11 (01)
  • [10] Machine-Learning Methods for Computational Science and Engineering
    Frank, Michael
    Drikakis, Dimitris
    Charissis, Vassilis
    COMPUTATION, 2020, 8 (01)