On the vanishing viscosity approximation in the vectorial case

被引:0
|
作者
Donadello, Carlotta [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
Conservation laws; vanishing viscosity approximations; global solutions; self-similar solutions; HYPERBOLIC CONSERVATION-LAWS; SYSTEMS; CONVERGENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present here some preliminary results in the study of the large time behavior of vanishing viscosity approximations for systems of conservation laws. In the first part we adapt the approximation technique used in [BY1] to obtain sharper bounds on the convergence rate of the viscous approximations, u(epsilon), in the case the solution u of the hyperbolic system is self similar and contains exactly one interaction between shocks of different families. Then, in the second part, we present a new proof of the result by D. Serre, [S], on existence and uniqueness of solutions of parabolic systems of conservation laws defined globally in time, for -infinity < t < +infinity.
引用
收藏
页码:547 / 556
页数:10
相关论文
共 50 条
  • [21] Homogenization of supremal functionals in the vectorial case (via Lp-approximation)
    D'Elia, Lorenza
    Eleuteri, Michela
    Zappale, Elvira
    ANALYSIS AND APPLICATIONS, 2024, 22 (07) : 1255 - 1302
  • [22] On the vanishing viscosity limit in a disk
    Kelliher, James P.
    MATHEMATISCHE ANNALEN, 2009, 343 (03) : 701 - 726
  • [23] Micropolar Fluids with Vanishing Viscosity
    Ortega-Torres, E.
    Villamizar-Roa, E. J.
    Rojas-Medar, M. A.
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [24] AVERAGING ON A BACKGROUND OF VANISHING VISCOSITY
    KOZLOV, SM
    PYATNITSKII, AL
    MATHEMATICS OF THE USSR-SBORNIK, 1991, 70 (01): : 241 - 261
  • [25] VANISHING VISCOSITY FOR FRACTAL SETS
    Mosco, Umberto
    Vivaldi, Maria Agostina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (03) : 1207 - 1235
  • [26] OBSERVATIONS ON THE VANISHING VISCOSITY LIMIT
    Kelliher, James P.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (03) : 2003 - 2027
  • [27] On the vanishing viscosity limit in a disk
    James P. Kelliher
    Mathematische Annalen, 2009, 343 : 701 - 726
  • [28] VANISHING VISCOSITY FOR TRAFFIC ON NETWORKS
    Coclite, G. M.
    Garavello, M.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (04) : 1761 - 1783
  • [29] Approximation Properties of Vectorial Exponential Functions
    Buet, Christophe
    Despres, Bruno
    Morel, Guillaume
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (03) : 1801 - 1831
  • [30] DYNAMIC STABILITY AND VANISHING VISCOSITY - A CASE-STUDY OF A NONSTRICTLY HYPERBOLIC SYSTEM
    FREISTUHLER, H
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) : 561 - 582