On the vanishing viscosity limit in a disk

被引:35
|
作者
Kelliher, James P. [1 ,2 ]
机构
[1] Univ Calif Riverside, Riverside, CA 92521 USA
[2] Brown Univ, Dept Math, Providence, RI 02912 USA
关键词
STOKES OPERATOR; EIGENFUNCTIONS; ZEROS;
D O I
10.1007/s00208-008-0287-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a solution of the Navier-Stokes equations converges in the vanishing viscosity limit to a solution of the Euler equations if their velocities converge in the energy (L (2)) norm uniformly in time as the viscosity nu vanishes. We show that a necessary and sufficient condition for the vanishing viscosity limit to hold in a disk is that the space-time energy density of the solution to the Navier-Stokes equations in a boundary layer of width proportional to nu vanish with nu, and that one need only consider spatial variations whose frequencies in the radial or tangential direction lie in a band centered around 1/nu.
引用
收藏
页码:701 / 726
页数:26
相关论文
共 50 条
  • [1] On the vanishing viscosity limit in a disk
    James P. Kelliher
    Mathematische Annalen, 2009, 343 : 701 - 726
  • [2] OBSERVATIONS ON THE VANISHING VISCOSITY LIMIT
    Kelliher, James P.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (03) : 2003 - 2027
  • [3] ON THE VANISHING VISCOSITY LIMIT OF A CHEMOTAXIS MODEL
    Chen, Hua
    Li, Jian-Meng
    Wang, Kelei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (03) : 1963 - 1987
  • [4] The vanishing viscosity limit for a dyadic model
    Cheskidov, Alexey
    Friedlander, Susan
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (08) : 783 - 787
  • [5] Vanishing shear viscosity limit in the magnetohydrodynamic equations
    Fan, Jishan
    Jiang, Song
    Nakamura, Gen
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (03) : 691 - 708
  • [6] A Note on the Vanishing Viscosity Limit in the Yudovich Class
    Seis, Christian
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (01): : 112 - 122
  • [7] Vanishing viscosity limit for concentrated vortex rings
    Butta, Paolo
    Cavallaro, Guido
    Marchioro, Carlo
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (12)
  • [8] Vanishing viscosity limit for axisymmetric vortex rings
    Gallay, Thierry
    Sverak, Vladimir
    INVENTIONES MATHEMATICAE, 2024, 237 (01) : 275 - 348
  • [9] A survey on some vanishing viscosity limit results
    Beirao da Veiga, Hugo
    Crispo, Francesca
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [10] The vanishing viscosity limit for some symmetric flows
    Gie, Gung-Min
    Kelliher, James P.
    Lopes Filho, Milton C.
    Mazzucato, Anna L.
    Nussenzveig Lopes, Helena J.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (05): : 1237 - 1280