A Machine Learning-based Approach for Failure Prediction at Cell Level based on Wafer Acceptance Test Parameters

被引:5
|
作者
Chen, Xiang [1 ]
Zhao, Yi [1 ]
Lu, Hongliang [1 ]
Shao, Xiaoqiang [1 ]
Chen, Cheng [1 ]
Huang, Yu [1 ]
机构
[1] Huawei Technol Co Ltd, Shenzhen, Peoples R China
关键词
Machine learning; Feature selection; Failure prediction; Wafer Acceptance Test; Diagnosis; Yield;
D O I
10.1109/MDTS52103.2021.9476151
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wafer Acceptance Test (WAT) or commonly known as Process Control Monitoring (PCM) includes numerous testing items that have many important applications, such as yield improvement and production cost control. The prediction of wafer yield based on WAT parameters has been successfully employed to reduce production costs spent on the circuit probing process. However, the relationship between WAT and subsequent diagnosis reports has not been sufficiently explored yet. This paper proposes a learning-based framework for failure prediction at cell level from WAT data, including various techniques for feature selection and handling imbalanced classes. Based on the selected parameters, machine learning models are employed to predict the failure of a given cell. The potential of the proposed methodology is evaluated over a set of industrial data. Experimental results demonstrate that our methodology can provide accurate test predictions (0.95+ accuracy, F1-score, and Area Under the Receiver Operating Characteristic curve (AUC-ROC)).
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Prediction of Wafer Map Categories Using Wafer Acceptance Test Parameters in Semiconductor Manufacturing
    Lim, Martin Ying Song
    Sharma, Anurag
    Chin, Cheng Siong
    Yip, Tommy Chun Ming
    Ong, Jonathan Yoong Seang
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2022, PART II, 2022, 647 : 136 - 144
  • [42] How to approach machine learning-based prediction of drug/compound–target interactions
    Heval Atas Guvenilir
    Tunca Doğan
    Journal of Cheminformatics, 15
  • [43] A machine learning-based approach for product maintenance prediction with reliability information conversion
    Zhang H.
    He X.
    Yan W.
    Jiang Z.
    Zhu S.
    Autonomous Intelligent Systems, 2022, 2 (01):
  • [44] Improving the Accuracy of Oncology Diagnosis: A Machine Learning-Based Approach to Cancer Prediction
    Cabanillas-Carbonell, Michael
    Zapata-Paulini, Joselyn
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (11) : 102 - 122
  • [45] Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach
    Feng, De-Cheng
    Liu, Zhen-Tao
    Wang, Xiao-Dan
    Chen, Yin
    Chang, Jia-Qi
    Wei, Dong-Fang
    Jiang, Zhong-Ming
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 230
  • [46] A Novel Machine Learning-based Approach to City Crime Sensor Placement Prediction
    Nedeljkovic, Denis
    Fares, Nadine Y.
    Jammal, Manar
    2023 IEEE 9TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT, 2023,
  • [47] A Machine Learning-Based Approach for the Prediction of Acute Coronary Syndrome Requiring Revascularization
    Yung-Kyun Noh
    Ji Young Park
    Byoung Geol Choi
    Kee-Eung Kim
    Seung-Woon Rha
    Journal of Medical Systems, 2019, 43
  • [48] A Machine Learning-Based Approach for the Prediction of Acute Coronary Syndrome Requiring Revascularization
    Noh, Yung-Kyun
    Park, Ji Young
    Choi, Byoung Geol
    Kim, Kee-Eung
    Rha, Seung-Woon
    JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (08)
  • [49] Machine learning-based approach to GPS antijamming
    Wang, Cheng-Zhen
    Kong, Ling-Wei
    Jiang, Junjie
    Lai, Ying-Cheng
    GPS SOLUTIONS, 2021, 25 (03)
  • [50] A Machine Learning-based Approach for Groundwater Mapping
    Zzaman, Rashed Uz
    Nowreen, Sara
    Khan, Irtesam Mahmud
    Islam, Md Rajibul
    Ibtehaz, Nabil
    Rahman, M. Saifur
    Zahid, Anwar
    Farzana, Dilruba
    Sharmin, Afroza
    Rahman, M. Sohel
    NATURAL RESOURCES RESEARCH, 2022, 31 (01) : 281 - 299