The Tate conjecture for cubic fourfolds over a finite field

被引:4
|
作者
Levin, N [1 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
关键词
Tate conjecture; algebraic cycles; canonical coordinates; period maps;
D O I
10.1023/A:1017532821467
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Tate conjecture for codimension 2 cycles on an ordinary cubic fourfold over a finite field. The proof involves the construction of canonical coordinates on the formal deformation space via a crystalline period map.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [41] Automorphisms and periods of cubic fourfolds
    Radu Laza
    Zhiwei Zheng
    Mathematische Zeitschrift, 2022, 300 : 1455 - 1507
  • [42] Topology of real cubic fourfolds
    Finashin, S.
    Kharlamov, V.
    JOURNAL OF TOPOLOGY, 2010, 3 (01) : 1 - 28
  • [43] THE MODULI SPACE OF CUBIC FOURFOLDS
    Laza, Radu
    JOURNAL OF ALGEBRAIC GEOMETRY, 2009, 18 (03) : 511 - 545
  • [44] The period map for cubic fourfolds
    Looijenga, Eduard
    INVENTIONES MATHEMATICAE, 2009, 177 (01) : 213 - 233
  • [45] Twisted cubics on cubic fourfolds
    Lehn, Christian
    Lehn, Manfred
    Sorger, Christoph
    van Straten, Duco
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 731 : 87 - 128
  • [46] Automorphisms and periods of cubic fourfolds
    Laza, Radu
    Zheng, Zhiwei
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (02) : 1455 - 1507
  • [47] ON CUBIC FOURFOLDS WITH AN INDUCTIVE STRUCTURE
    Koike, Kenji
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (09) : 3757 - 3769
  • [48] A simplified proof for the limit of a tower over a cubic finite field
    Bassa, Alp
    Stichtenoth, Henning
    JOURNAL OF NUMBER THEORY, 2007, 123 (01) : 154 - 169
  • [49] On the quasi-group of a cubic surface over a finite field
    Elsenhans, Andreas-Stephan
    Jahnel, Joerg
    JOURNAL OF NUMBER THEORY, 2012, 132 (07) : 1554 - 1571
  • [50] The number of cubic surfaces with 27 lines over a finite field
    Karaoglu, Fatma
    Betten, Anton
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (01) : 43 - 57