On Miki's identity for Bernoulli numbers

被引:60
|
作者
Gessel, IM [1 ]
机构
[1] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
基金
美国国家科学基金会;
关键词
Bernoulli numbers; Stirling numbers;
D O I
10.1016/j.jnt.2003.08.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short proof of Miki's identity for Bernoulli numbers, [Graphics] for n greater than or equal to 4 where, betai = Bi/i, Bi is the ith Bernoulli number, and H-n = 1 + 1/2 + ... + 1/n. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [11] A new identity for cosine function and generalized Bernoulli numbers
    Mittou, Brahim
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025,
  • [12] BERNOULLI'S LAW OF LARGE NUMBERS
    Bolthausen, Erwin
    Wuethrich, Mario V.
    ASTIN BULLETIN, 2013, 43 (02): : 73 - 79
  • [13] On Bernoulli's numbers and Euler's polynomials.
    Frobenius, G
    SITZUNGSBERICHTE DER KONIGLICH PREUSSISCHEN AKADEMIE DER WISSENSCHAFTEN, 1910, : 809 - 847
  • [14] On second degree congruences and Bernoulli's numbers
    Tamarkine
    Friedmann
    MATHEMATISCHE ANNALEN, 1906, 62 : 409 - 412
  • [15] A series related to Bernoulli's numbers.
    Sutton, JR
    NATURE, 1902, 66 : 492 - 492
  • [17] A class of polynomials and connections with Bernoulli’s numbers
    Gradimir V. Milovanović
    Yilmaz Simsek
    Vladica S. Stojanović
    The Journal of Analysis, 2019, 27 : 709 - 726
  • [18] A class of polynomials and connections with Bernoulli's numbers
    Milovanovic, Gradimir, V
    Simsek, Yilmaz
    Stojanovic, Vladica S.
    JOURNAL OF ANALYSIS, 2019, 27 (03): : 709 - 726
  • [19] BERNOULLI'S PRINCIPLE: MOBILE NUMBERS TECHNOLOGY
    Sunol, J. J.
    Tarres, J.
    12TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE (INTED), 2018, : 5195 - 5199
  • [20] BERNOULLI'S LAW OF LARGE NUMBERS AND THE STRONG LAW OF LARGE NUMBERS
    Chibisov, D. M.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2016, 60 (02) : 318 - 319