A posteriori error estimates of finite element method for the time-dependent Navier-Stokes equations

被引:6
|
作者
Zhang, Tong [1 ,2 ]
Li, ShiShun [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
[2] Univ Fed Parana, Dept Matemat, Ctr Politecn, BR-81531990 Curitiba, Parana, Brazil
关键词
Posteriori error estimates; Time-dependent Navier Stokes equations; Navier Stokes reconstruction; Backward Euler scheme; ELLIPTIC RECONSTRUCTION; NONLINEAR PROBLEMS; DISCRETIZATIONS; APPROXIMATIONS;
D O I
10.1016/j.amc.2017.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the posteriori error estimates of Galerkin finite element method for the unsteady Navier-Stokes equations. By constructing the approximate Navier-Stokes reconstructions, the errors of velocity and pressure are split into two parts. For the estimates of time part, the energy method and other skills are used, for the estimates of spatial part, the well-developed theoretical analysis of posteriori error estimates for the elliptic problem can be adopted. More important, the error estimates of time part can be controlled by the estimates of spatial part. As a consequence, the posteriori error estimates in L-infinity(0, T; L-2(Omega)),L-infinity(0, T; H-1(Omega)) and L-2(0, T; L-2(Omega)) norms for velocity and pressure are derived in both spatial discrete and time-space fully discrete schemes. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:13 / 26
页数:14
相关论文
共 50 条
  • [41] A decoupled stabilized finite element method for the time-dependent Navier-Stokes/Biot problem
    Guo, Liming
    Chen, Wenbin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (17) : 10749 - 10774
  • [42] UNCONDITIONAL CONVERGENCE AND ERROR ESTIMATES OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR THE MICROPOLAR NAVIER-STOKES EQUATIONS
    Mao, Shipeng
    Sun, Jiaao
    Xue, Wendong
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (01): : 71 - 110
  • [43] Continuous interior penalty finite element method for the time-dependent Navier-Stokes equations:: space discretization and convergence
    Burman, Erik
    Fernandez, Miguel A.
    NUMERISCHE MATHEMATIK, 2007, 107 (01) : 39 - 77
  • [44] A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier-Stokes equations
    He, Yinnian
    Li, Jian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (03) : 708 - 725
  • [45] A Mixed Finite Element Approximation for Time-Dependent Navier-Stokes Equations with a General Boundary Condition
    El Moutea, Omar
    Nakbi, Nadia
    El Akkad, Abdeslam
    Elkhalfi, Ahmed
    El Ouadefli, Lahcen
    Vlase, Sorin
    Scutaru, Maria Luminita
    SYMMETRY-BASEL, 2023, 15 (11):
  • [46] CONVERGENCE AND ERROR ESTIMATES FOR FINITE-ELEMENT APPROXIMATIONS OF STATIONARY NAVIER-STOKES EQUATIONS
    JAMET, P
    RAVIART, PA
    SIAM REVIEW, 1974, 16 (01) : 128 - 128
  • [47] Adding the time-dependent terms to a segregated finite element solution of the incompressible Navier-Stokes equations
    Shaw, C.T.
    Engineering computations, 1991, 8 (04) : 305 - 316
  • [48] Error estimates for the finite element method of the chemotaxis-Navier–Stokes equations
    Zhenzhen Li
    Liuchao Xiao
    Minghao Li
    Hongru Chen
    Journal of Applied Mathematics and Computing, 2023, 69 : 3039 - 3065
  • [49] Error estimates for the finite element method of the chemotaxis-Navier-Stokes equations
    Li, Zhenzhen
    Xiao, Liuchao
    Li, Minghao
    Chen, Hongru
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (04) : 3039 - 3065
  • [50] A posteriori estimates for approximations of time-dependent Stokes equations
    Karakatsani, Fotini
    Makridakis, Charalambos
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2007, 27 (04) : 741 - 764